首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacic MK  Smith CJ 《Gene》2005,353(1):80-88
Tn4555, a mobilizable transposon carrying cefoxitin resistance, is directed to a preferred target site in the Bacteroides fragilis chromosome by a transposon-encoded targeting protein TnpA. In an effort to characterize target site selection for Tn4555, the existence of preferred target sites in other species of Bacteroides and in Escherichia coli was examined. For these analyses a Tn4555 mini element, pFD660, was transferred from E. coli donors to Bacteroides thetaiotaomicron or Bacteroides ovatus recipients and the resulting sites of insertion analyzed. A similar construct, pFD794 was used to determine insertion sites in E. coli, and preferred sites were found in all bacteria tested. Also the ability of TnpA to bind to various targets was examined in mobility shift assays. Although TnpA bound to all tested sequences, it displayed higher affinity for the target sites. The binding characteristics of TnpA and the lack of significant base sequence homology between targets suggested that secondary structure of the sites was important for TnpA binding. Circular permutation tests supported the idea that TnpA targets bent DNA.  相似文献   

2.
The conjugative transposon Tn916 inserts with widely different frequencies into a variety of target sites with related nucleotide sequences. The binding of chimeric proteins, consisting of maltose-binding protein fused to Tn916 integrase, to three different target sequences for Tn916 was examined by DNase I protection experiments. The C-terminal DNA binding domain of the Tn916 integrase protein was shown to protect approximately 40 bp, spanning target sites in the orfA and cat genes of the plasmid pIP501 and in the cylA gene of the plasmid pAD1. Competition binding assays showed that the affinities of the three target sites for Tn916 integrase varied over a greater than 3- but less than 10-fold range and that the cat target site bound integrase at a lower affinity than did the other two target sites. A PCR-based assay for transposition in Escherichia coli was developed to assess the frequency with which a defective minitransposon inserted into each target site. In these experiments, integrase provided in trans from a plasmid was the sole transposon-encoded protein present. This assay detected transposition into the orfA and cylA target sites but not into the cat target site. Therefore, the frequency of transposon insertion into a particular target site correlated with the affinity of the target for the integrase protein. Sequences within the target fragments similar to known Tn916 insertion sites were not protected by integrase protein. Analysis ot he electrophoretic behavior of circularly permuted sets of DNA fragments showed that all three target sites contained structural features consistent with the presence of a static bend, suggesting that these structural features in addition to the primary nucleotide sequence are necessary for integrase binding and, thus, target site activity.  相似文献   

3.
The Bacteroides mobilizable transposon Tn4555 is a 12.2-kb molecule that encodes resistance to cefoxitin. Conjugal transposition is hypothesized to occur via a circular intermediate and is stimulated by coresident tetracycline resistance elements and low levels of tetracycline. In this work, the ends of the transposon were identified and found to consist of 12-bp imperfect inverted repeats, with an extra base at one end. In the circular form, the ends were separated by a 6-bp "coupling sequence" which was associated with either the left or the right transposon terminus when the transposon was inserted into the chromosome. Tn4555 does not duplicate its target site upon insertion. Using a conjugation-based transposition assay, we showed that the coupling sequence originated from 6 bases of genomic DNA flanking either side of the transposon prior to excision. Tn4555 preferentially transposed into a 589-bp genomic locus containing a 207-bp direct repeat. Integration occurred before or after the repeated sequence, with one integration site between the two repeats. These observations are consistent with a transposition model based on site-specific recombination. In the bacteriophage lambda model for site-specific recombination, the bacteriophage recombines with the Escherichia coli chromosome via a 7-bp "crossover" region. We propose that the coupling sequence of Tn4555 is analogous in function to the crossover region of lambda but that unlike the situation in lambda, recombination occurs between regions of nonhomologous DNA. This ability to recombine into divergent target sites is also a feature of the gram-positive bacterial transposon Tn916.  相似文献   

4.
Conjugative transposons have been identified in several bacterial species, most notably the Gram-positive Enterococci and the Gram-negative Bacteroides. In Bacteroides species, these elements encode a complete conjugative machinery, which mediates their own intercellular transfer, and they can mobilize in trans co-resident elements. One such mobilizable element is the antibiotic resistance transposon, Tn4555, which was previously found to integrate into a specific genome target site via a site-specific recombination mechanism. In this work, we demonstrate that three Tn4555 genes were involved in integration of the element. These were int encoding a lambda-type integrase, which was absolutely required for integration of the transposon, and two accessory genes, which increased the frequency of integration. Interestingly, one of these accessory gene products, TnpA, directed the insertion of Tn4555 into the genome target site; in the absence of tnpA, the insertion pattern was essentially random. This is the first example of a site-specific recombinase that uses a specific targeting protein.  相似文献   

5.
Like other transposons of the Tn3 family, Tn4430 exhibits target immunity, a process that prevents multiple insertions of the transposon into the same DNA molecule. Immunity is conferred by the terminal inverted repeats of the transposon and is specific to each element of the family, indicating that the transposase TnpA is directly involved in the process.However, the molecular mechanism whereby this protein promotes efficient transposition into permissive targets while preventing transposition into immune targets remains unknown. Here, we demonstrate that both functions of TnpA can be uncoupled from each other by isolating and characterizing mutants that are proficient in transposition (T+) but impaired in immunity (I-). The identified T+/I- mutations are clustered into separate structural and functional domains of TnpA, indicating that different activities of the protein contribute to immunity.Combination of separate mutations had synergistic effects on target immunity but contrasting effects on transposition. One class of mutations was found to stimulate transposition, whereas other mutations appeared to reduce TnpA activity. The data are discussed with respect to alternative models in which TnpA acts as a specific determinant to both establish and respond to immunity.  相似文献   

6.
The bacterial transposon Tn7 is distinguished among mobile genetic elements by its targeting abilities. Recently, we reported that Tn7 is able to selectively insert adjacent to triple-helical DNA. The binding of TnsC, a Tn7-encoded protein, to the triplex DNA target leads to the specific transposition of Tn7 adjacent to both inter- and intramolecular pyrimidine motif triplexes. Here, we further probe how Tn7 targets triplex DNA. We report that TnsC discriminates between different types of triplexes, showing binding preference for pyrimidine but not for purine motif intermolecular triplex DNA. The binding preferences of TnsC and the Tn7 insertion profiles were obtained using psoralenated, triplex- forming oligonucleotides annealed to plasmid DNAs. Although the presence of psoralen is not required for targeting nor is it alone able to attract TnsC, we show that the location of psoralen within the pyrimidine motif triplex does alter the position of Tn7 insertion relative to the triplex. Comparison between the triplex-targeting pathway and the highly site-specific targeting pathway mediated by the binding of the Tn7-encoded protein, TnsD, to the unique site attTn7, suggests that similar structural features within each target DNA are recognized by TnsC, leading to site-specific transposition. This work demonstrates that a prokaryotic protein involved in the targeting and regulation of Tn7 translocation, TnsC, can selectively recognize pyrimidine motif triplexes.  相似文献   

7.
The 4149-bp transposon Tn4430 from Bacillus thuringiensis is delineated by 38-bp inverted repeats and codes for a 113-kd protein that shares homology with the transposases (TnpA) of Tn3, Tn21 and Tn501. Through transpositional recombination, this protein generates the formation of co-integrates between both donor and target replicons, with duplication of Tn4430 molecules. These features are characteristic of transposons of the Tn3 family (class II elements). The second step of the transposition process, the co-integrate resolution, is mediated by a 32-kd protein. This protein (TnpI) displays regional similarities with site-specific recombinases of the integrase family, such as Int of bacteriophage lambda, Cre of bacteriophage P1 or TnpA and TnpB of the Tn554 transposon. Moreover, the 250-bp sequence upstream to the tnpI gene contains several structural features that are reminiscent of the attP attachment site of phage lambda. This unique association between the integrase-like TnpI recombinase and the TnpA transposase qualifies Tn4430 as a member of a new group within the class II mobile genetic elements.  相似文献   

8.
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process.  相似文献   

9.
The bacterial transposon Tn7 exhibits target immunity, a process that prevents Tn7 from transposing into target DNAs that already contain a copy of the transposon. This work investigates the mechanism of target immunity in vitro. We demonstrate that two Tn7-encoded proteins_TnsB, which binds specifically to the ends of Tn7, and TnsC, the ATP-dependent DNA binding protein_act as a molecular switch to impose immunity on target DNAs containing Tn7 (or just Tn7 ends). TnsC binds to target DNA molecules and communicates with the Tn7 transposition machinery; here we show that target DNAs containing Tn7 ends are also bound and subsequently inactivated by TnsB. Protein-protein interactions between TnsB and TnsC appear to be responsible for this inactivation; the target DNA promotes these interactions by tethering TnsB and TnsC in high local concentration. An attractive model that emerges from this work is that TnsB triggers the dissociation of TnsC from the Tn7 end-containing target DNA; that dissociation depends on TnsC's ability to hydrolyze ATP. We propose that these interactions between TnsB and TnsC not only prevent Tn7 from inserting into itself, but also facilitate the selection of preferred target sites that is the hallmark of Tn7 transposition.  相似文献   

10.
The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.  相似文献   

11.
R Bainton  P Gamas  N L Craig 《Cell》1991,65(5):805-816
We have developed a cell-free system in which the bacterial transposon Tn7 inserts at high frequency into its preferred target site in the Escherichia coli chromosome, attTn7; Tn7 transposition in vitro requires ATP and Tn7-encoded proteins. Tn7 transposes via a cut and paste mechanism in which the element is excised from the donor DNA by staggered double-strand breaks and then inserted into attTn7 by the joining of 3' transposon ends to 5' target ends. Neither recombination intermediates nor products are observed in the absence of any protein component or DNA substrate. Thus, we suggest that Tn7 transposition occurs in a nucleoprotein complex containing several proteins and the substrate DNAs and that recognition of attTn7 within this complex provokes strand cleavages at the Tn7 ends.  相似文献   

12.
We report a technique which uses the cointegrate intermediate of transposon Tn1000 transposition as a means to lower the copy number of ColE1-type plasmids. The transposition of Tn1000 from one replicon to another is considered a two-step process. In the first step, the transposon-encoded TnpA protein mediates fusion of the two replicons to produce a cointegrate. In the second step, the cointegrate is resolved by site-specific recombination between the two transposon copies to yield the final transposition products: the target replicon with an integrated transposon plus the regenerated donor replicon. Using in vitro techniques, the DNA sequence of the Tn1000 transposon was altered so that cointegrate formation occurs but resolution by the site-specific recombination pathway is blocked. When this transposon was resident on an F factor-derived plasmid, a cointegrate was formed between a multicopy ColE1-type target plasmid and the conjugative F plasmid. Conjugational transfer of this cointegrate into a polA strain resulted in a stable cointegrate in which replication from the ColE1 plasmid origin was inhibited and replication proceeded only from the single-copy F factor replication origin. We assayed isogenic strains which harbored plasmids encoding chloramphenicol acetyltransferase to measure the copy number of such F factor-ColE1-type cointegrate plasmids and found that the copy number was decreased to the level of single-copy chromosomal elements. This method was used to study the effect of copy number on the expression of the fabA gene (which encodes the key fatty acid-biosynthetic enzyme beta-hydroxydecanoylthioester dehydrase) by the regulatory protein encoded by the fadR gene.  相似文献   

13.
Tsuda M  Genka H 《Journal of bacteriology》2001,183(21):6215-6224
It has been reported that the toluene-degrading (xyl) genes from Pseudomonas putida plasmid pWW53 are able to translocate to broad-host-range drug resistance plasmid RP4, and pWW53-4 is one of the smallest RP4 derivatives (H. Keil, S. Keil, R. W. Pickup, and P. A. Williams, J. Bacteriol. 164:887-895, 1985). Our investigation of pWW53-4 in this study demonstrated that such a translocated region that is 39 kb long is a transposon. This mobile element, Tn4656, was classified as a class II transposon since its transposition occurred by a two-step process: transposase (TnpA)-mediated formation of the cointegrate and resolvase (TnpR)-mediated site-specific resolution of the cointegrate at the two copies of the res site. The Tn4656 TnpA and TnpR functions encoded in the rightmost 4-kb region were found to be exchangeable with those specified by other Tn1721-related class II transposons, including another toluene transposon, Tn4653. Sequence analysis of the transposition-related genes and sites of Tn4656 also supported the hypothesis that this transposon is closely related to the Tn1721-related transposons. The lower transposition frequency of Tn4656 has been suggested to be due to the unique nucleotide sequence of one of the terminal 39-bp inverted repeats.  相似文献   

14.
Kennedy AK  Haniford DB  Mizuuchi K 《Cell》2000,101(3):295-305
The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase. The results suggest that the first three steps required for double-strand cutting at the transposon end proceed as a succession of pseudo-reverse reaction steps while the 3' end of the transposon remains bound to the same side of the active site. However, the mode of substrate binding to the active site changes for the cut transposon 3' end to target DNA strand joining. The phosphorothioate stereoselectivity of the corresponding steps of phage Mu transposition and HIV DNA integration matches that of Tn10 reaction, indicating a common mode of substrate-active site interactions for this class of DNA transposition reactions.  相似文献   

15.
Dissemination of the bacterial transposon Tn10 is limited by target site channeling, a process wherein the transposon ends are forced to interact with and insert into a target site located within the transposon. Integration host factor (IHF) promotes this self-destructive event by binding to the transpososome and forming a DNA loop close to one or both transposon ends; this loop imposes geometric and topological constraints that are responsible for channeling. We demonstrate that a second ‘host’ protein, histone-like nucleoid structuring protein (H-NS), acts as an anti-channeling factor to limit self-destructive intramolecular transposition events in vitro. Evidence that H-NS competes with IHF for binding to the Tn10 transpososome to block channeling and that this event is relatively insensitive to the level of DNA supercoiling present in the Tn10-containing substrate plasmid are presented. This latter observation is atypical for H-NS, as H-NS binding to other DNA sequences, such as promoters, is generally affected by subtle changes in DNA structure.  相似文献   

16.
Transmissible cefoxitin (FX) resistance in Bacteroides vulgatus CLA341 was associated with the 12.5-kb, mobilizable transposon, Tn4555, which encoded the beta-lactamase gene cfxA. Transfer occurred by a conjugation-like mechanism, was stimulated by growth of donor cells with tetracycline (TC), and required the presence of a Bacteroides chromosomal Tcr element. Transconjugants resistant to either FX, TC, or both drugs were obtained, but only Fxr Tcr isolates could act as donors of Fxr in subsequent matings. Transfer of Fxr could be restored in Fxr Tcs strains by the introduction of a conjugal Tcr element from Bacteroides fragilis V479-1. A covalently closed circular DNA form of Tn4555 was observed in donor cells by Southern hybridization, and the levels of this circular transposon increased significantly in cells grown with TC. Both the cfxA gene and the Tn4555 mobilization region hybridized to the circular DNA, suggesting that this was a structurally intact transposon unit. Circular transposon DNA purified by CsCl-ethidium bromide density gradient centrifugation was used to transform Tcs B. fragilis 638, and Fxr transformants were obtained. Both the circular form and the integrated Tn4555 were observed in transformants, but the circular form was present at less than one copy per chromosomal equivalent. Examination of genomic DNA from Fxr transformants and transconjugants revealed that Tn4555 could insert at a wide variety of chromosomal sites. Multiple transposon insertions were present in many of the transconjugants, indicating that there was no specific barrier to the introduction of a second transposon copy.  相似文献   

17.
We have used the bacterial transposon Tn7 to examine communication between widely separated DNA sites in the Escherichia coli chromosome. Using Tn7 target immunity, a regulatory feature of transposition which influences target selection, we have evaluated (i) how the presence of Tn7 sequences at one DNA site affects Tn7 insertion into another site in the same DNA molecule and (ii) the nucleotide distances over which the two sites are able to communicate. We demonstrate that Tn7 sequences at one chromosomal site act at a distance to inhibit insertion of Tn7 elsewhere in that DNA as far away as 190 kb, reflecting effective long-range cis interactions. We have found that while target immunity is effective over a substantial region of the chromosome, insertion of Tn7 into a more distant site 1.9 Mb away in the same DNA is not inhibited; this observation provides evidence that target immunity relies on DNA spacing. We also find that within the region of the chromosome affected by target immunity, the magnitude of the immune effect is greater at close DNA sites than DNA sites farther away, suggesting that target immunity is distance dependent. We also extend the characterization of the Tn7 end-sequences involved in transposition and target immunity and describe how Tn7 target immunity can be used as a tool for probing bacterial chromosome structure.  相似文献   

18.
Tn7: a target site-specific transposon   总被引:6,自引:0,他引:6  
The bacterial transposon Tn7 is an unusual mobile DNA segment. Most transposable elements move at low-frequency and display little target site-selectivity. By contrast, Tn7 inserts at high-frequency into a single specific site in the chromosomes of many bacteria. In the absence of this specific site, called attTn7 in Escherichia coli where Tn7 has been most extensively studied, Tn7 transposes at low-frequency and inserts into many different sites. Much has recently been learned about Tn7 transposition from both genetic and biochemical studies. The Tn7 recombination machinery is elaborate and includes a large number of Tn7-encoded proteins, probably host-encoded proteins and also rather large cis-acting transposition sequences at the transposon termini and at the target site. Dissection of the Tn7 transposition mechanism has revealed that the DNA strand breakage and joining reactions that underlie the translocation of Tn7 have several unusual features.  相似文献   

19.
Tn 10/IS 10 transposition involves excision of the transposon from a donor site and subsequent joining of the excised transposon to a new target site. These steps are catalyzed by the Tn 10 -encoded transposase protein and require the presence of a suitable divalent metal ion. Like other transposase and retroviral integrase proteins, Tn 10 transposase appears to contain a single active site which includes a triad of acidic amino acid residues generally referred to as the DDE motif. In addition to its role in catalysis, the Tn 10 transposase DDE motif also functions in target capture, a step that in vitro is greatly facilitated by the presence of a suitable divalent metal ion. We show that cysteine residue substitutions at each of the DDE motif residues in Tn 10 transposase result in a change in the divalent metal ion requirements for catalysis, such that Mn2+but not Mg2+can be used. This switch in metal ion specificity provides evidence that each of the DDE motif residues functions directly in metal ion binding. We also show differential effects of DDE mutations on metal ion-assisted target capture. A number of models, including a two metal ion active site, are considered to explain these effects.  相似文献   

20.
It was shown that the site of previous integration (the donor site) of Tn9 affects the specificity of its next integration into the target molecule--phage lambda att80 DNA. The transposon integration sites were mapped by restriction and heteroduplex analysis following Tn9 transposition from chromosomal sites of Escherichia coli K-12 differing in location and Tn9 stability. When transposed from chromosomal galT::IS1 gene, Tn9 inserted into the site with coordinates 44,5 +/- 2 kb of lambda att80; when transposed from chromosomal attTn9A site, the transposon inserted into the sites with coordinates 31 +/- 0,7 kb or 33,3 +/- 0,5 kb. In the course of transposition of Tn9 from chromosomal attTn9N site the transposon inserted into the lambda att80 site with coordinates 26,5 +/- 5 kb. In the latter case, the increase of Tn9 single-stranded loop and the appearance of two new HindIII cleavage sites were observed in heteroduplex experiments. The data were interpreted as indicating structural rearrangements of Tn9 or linked sequences in the course of transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号