首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lumiracoxib is a substrate-selective inhibitor of endocannabinoid oxygenation by cyclooxygenase-2 (COX-2). We assayed a series of lumiracoxib derivatives to identify the structural determinants of substrate-selective inhibition. The hydrogen-bonding potential of the substituents at the ortho positions of the aniline ring dictated the potency and substrate selectivity of the inhibitors. The presence of a 5′-methyl group on the phenylacetic acid ring increased the potency of molecules with a single ortho substituent. Des-fluorolumiracoxib (2) was the most potent and selective inhibitor of endocannabinoid oxygenation. The positioning of critical substituents in the binding site was identified from a 2.35 Å crystal structure of lumiracoxib bound to COX-2.  相似文献   

2.
Cyclooxygenases (COXs) are the therapeutic targets of nonsteroidal antiinflammatory drugs. Indomethacin (INDO) was one of the first nonsteroidal antiinflammatory drugs to be characterized as a time-dependent, functionally irreversible inhibitor, but the molecular basis of this phenomenon is uncertain. In the crystal structure of INDO bound to COX-2, a small hydrophobic pocket was identified that surrounds the 2'-methyl group of INDO. The pocket is formed by the residues Ala-527, Val-349, Ser-530, and Leu-531. The contribution of this pocket to inhibition was evaluated by altering its volume by mutagenesis of Val-349. The V349A mutation expanded the pocket and increased the potency of INDO, whereas the V349L mutation reduced the size of the pocket and decreased the potency of INDO. Particularly striking was the reversibility of INDO inhibition of the V349L mutant. The 2'-des-methyl analogue of INDO (DM-INDO) was synthesized and tested against wild-type COX-1 and COX-2, as well as the Val-349 mutants. DM-INDO bound to all enzymes tested, but only inhibited wt mCOX-2 and the V349I enzyme. Without the 2'-methyl group anchoring DM-INDO in the active site, the compound was readily competed off of the enzyme by arachidonic acid. The kinetics of inhibition were comparable to the kinetics of binding as evaluated by fluorescence quenching. These results highlight binding of the 2'-methyl of INDO in the hydrophobic pocket as an important determinant of its time-dependent inhibition of COX enzymes.  相似文献   

3.
Prostaglandin synthesis by cyclooxygenases-1 and -2 (COX-1 and COX-2) involves an initial oxygenation of arachidonic acid at C-11, followed by endoperoxide and cyclopentane ring formation, and then a second reaction with molecular oxygen in the S configuration at C-15. The resulting 15S-hydroxyl group of prostaglandins is crucial for their bioactivity. Using human COX-1 and human and murine COX-2, we have identified two amino acids located in the oxygenase active site that control the stereochemistry at C-15. The most crucial determinant is Ser-530, the residue that is acetylated by aspirin. In COX-2, site-directed mutagenesis of Ser-530 to methionine, threonine, or valine produced highly active enzymes that formed 82-95% 15R-configuration prostaglandins; these have the opposite stereochemistry at C-15 to the natural products. In COX-1, the corresponding Ser-530 mutations inactivated the enzyme. The second residue, Val-349, exerts a more subtle influence. When Val-349 was replaced by isoleucine, the mutant COX-1 and COX-2 enzymes formed 41 and 65% 15R-prostaglandins, respectively. This change was highly specific for isoleucine, as mutations of Val-349 to alanine, leucine, asparagine, or threonine did not alter or only slightly altered (< or =13%) the S-configuration at C-15. These results establish a previously unrecognized role for Ser-530 and Val-349 in maintaining the correct S stereochemistry of the carbon-15 hydroxyl group during prostaglandin synthesis. The findings may also explain the absolute conservation of Ser-530, the target of aspirin, throughout the families of cyclooxygenase enzymes.  相似文献   

4.
Cyclooxygenase enzymes (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin G2. The inhibitory activity of rapid, reversible COX inhibitors (ibuprofen, naproxen, mefenamic acid, and lumiracoxib) demonstrated a significant increase in potency and time dependence of inhibition against double tryptophan murine COX-2 mutants at the 89/90 and 89/119 positions. In contrast, the slow, time-dependent COX inhibitors (diclofenac, indomethacin, and flurbiprofen) were unaffected by those mutations. Further mutagenesis studies suggested that mutation at position 89 was principally responsible for the changes in inhibitory potency of rapid, reversible inhibitors, whereas mutation at position 90 may exert some effect on the potency of COX-2-selective diarylheterocycle inhibitors; no effect was observed with mutation at position 119. Several crystal structures with or without NSAIDs indicated that placement of a bulky residue at position 89 caused a closure of a gap at the lobby, and alteration of histidine to tryptophan at position 90 changed the electrostatic profile of the side pocket of COX-2. Thus, these two residues, especially Val-89 at the lobby region, are crucial for the entrance and exit of some NSAIDs from the COX active site.  相似文献   

5.
New pyrazole and pyrazoline derivatives have been synthesized and their ability to inhibit ovine COX-1/COX-2 isozymes was evaluated using in vitro cyclooxygenase (COX) inhibition assay. Among the tested compounds, N-((5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)-3,5-bis(trifluoromethyl)aniline 8d exhibit optimal COX-2 inhibitory potency (IC(50)=0.26 lM) and selectivity (SI)=>192.3] comparable with reference drug celecoxib (IC(50) value of 0.28 lM and selectivity index of 178.57). Moreover, the anti-inflammatory activity of selected compounds, which are the most selective COX-2 inhibitors in the COX inhibition assay, was investigated in vivo using carrageenan-induced rat paw edema model. Molecular modeling was conducted to study the ability of the active compounds to bind into the active site of COX-2 which revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

6.
A group of regioisomeric phenylethynylbenzenesulfonamides possessing a COX-2 SO2NH2 pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 substituted-phenyl (H, OMe, OH, Me, F) group, were synthesized and evaluated as inhibitors of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isozymes. The target 1,2-diphenylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. In vitro COX-1/-2 isozyme inhibition structure-activity data showed that COX-1/-2 inhibition and the COX selectivity index (SI) are sensitive to the regioisomeric placement of the COX-2 SO2NH2 pharmacophore where the COX-2 potency order for the benzenesulfonamide regioisomers was generally meta>para and ortho. Among this group of compounds, the in vitro COX-1/-2 isozyme inhibition studies identified 3-(2-phenylethynyl)benzenesulfonamide (10a) as a COX-2 inhibitor (COX-2 IC50=0.45 microM) with a good COX-2 selectivity (COX-2 SI=70). In contrast, 2-[2-(3-fluorophenyl)ethynyl]benzenesulfonamide (11c) possessing a SO2NH2 COX-2 pharmacophore at the ortho-position of the C-1 phenyl ring exhibited COX-1 inhibition and selectivity (COX-1 IC50=3.6 microM). A molecular modeling study where 10a was docked in the binding site of COX-2 shows that the meta-SO2NH2 COX-2 pharmacophore was inserted inside the COX-2 secondary pocket (Arg513, Phe518, Val523, and His90). Similar docking of 10a within the COX-1 binding site shows that the meta-SO2NH2 pharmacophore is unable to interact with the respective amino acid residues in COX-1 that correspond to those near the secondary pocket in COX-2 due to the presence of the larger Ile523 in COX-1 that replaces Val523 in COX-2.  相似文献   

7.
Oxicams are widely used nonsteroidal anti-inflammatory drugs (NSAIDs), but little is known about the molecular basis of the interaction with their target enzymes, the cyclooxygenases (COX). Isoxicam is a nonselective inhibitor of COX-1 and COX-2 whereas meloxicam displays some selectivity for COX-2. Here we report crystal complexes of COX-2 with isoxicam and meloxicam at 2.0 and 2.45 angstroms, respectively, and a crystal complex of COX-1 with meloxicam at 2.4 angstroms. These structures reveal that the oxicams bind to the active site of COX-2 using a binding pose not seen with other NSAIDs through two highly coordinated water molecules. The 4-hydroxyl group on the thiazine ring partners with Ser-530 via hydrogen bonding, and the heteroatom of the carboxamide ring of the oxicam scaffold interacts with Tyr-385 and Ser-530 through a highly coordinated water molecule. The nitrogen atom of the thiazine and the oxygen atom of the carboxamide bind to Arg-120 and Tyr-355 via another highly ordered water molecule. The rotation of Leu-531 in the structure opens a novel binding pocket, which is not utilized for the binding of other NSAIDs. In addition, a detailed study of meloxicam·COX-2 interactions revealed that mutation of Val-434 to Ile significantly reduces inhibition by meloxicam due to subtle changes around Phe-518, giving rise to the preferential inhibition of COX-2 over COX-1.  相似文献   

8.
A group of acyclic 2-alkyl-1,1-diphenyl-2-(4-methylsulfonylphenyl)ethenes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified 1,1-diphenyl-2-(4-methylsulfonylphenyl)hex-1-ene as a highly potent (IC(50) = 0.014 microM), and an extremely selective [COX-2 selectivity index (SI) > 7142], COX-2 inhibitor that showed superior anti-inflammatory (AI) activity (ID(50) = 2.5 mg/kg) relative to celecoxib (ID(50) = 10.8 mg/kg). This initial study was extended to include the design of a structurally related group of acyclic triaryl (Z)-olefins possessing an acetoxy (OAc) substituent at the para-position of the C-1 phenyl ring that is cis to a C-2 4-methylsulfonylphenyl substituent. COX-1 and COX-2 inhibition studies showed that (Z)-1-(4-acetoxyphenyl)-1-phenyl-2-(4-methylsulfonylphenyl)but-1-ene [(Z)-13b] is a potent (COX-1 IC(50) = 2.4 microM; COX-2 IC(50) = 0.03 microM), and selective (COX-2 SI = 81), COX-2 inhibitor which is a potent AI agent (ID(50) = 4.1mg/kg) with equipotent analgesic activity to celecoxib. A molecular modeling (docking) study showed that the SO(2)Me substituent of (Z)-13b inserts deep inside the 2 degrees -pocket of the COX-2 active site, where one of the O-atoms of SO(2) group undergoes a H-bonding interaction with Phe(518). The p-OAc substituent on the C-1 phenyl ring is oriented in a hydrophobic pocket comprised of Met(522), Gly(526), Trp(387), Tyr(348), and Tyr(385), and the C-2 ethyl substituent is oriented towards the mouth of the COX-2 channel in the vicinity of amino acid residues Arg(120), Leu(531), and Val(349). Structure-activity data acquired indicate that a (Z)-olefin having cis C-1 4-acetoxyphenyl (phenyl) and C-2 4-methylsulfonylphenyl substituents, and a C-1 phenyl substituent in conjunction with either a C-2 hydrogen or short alkyl substituent provides a novel template to design acyclic olefinic COX-2 inhibitors that, like aspirin, have the potential to acetylate COX-2.  相似文献   

9.
Inflammatory bowel disease (IBD) is a common chronic gastrointestinal disorder characterized by alternating periods of remission and active intestinal inflammation. Some studies suggest that antiinflammatory drugs are a promising alternative for treatment of the disease. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Wistar rats (n = 25) were randomized into four groups, as follows: Group (1) Sham group: sham induced-colitis rats; Group (2) TNBS group: nontreated induced-colitis rats; Group (3) Lumiracoxib control group; and Group (4) Lumiracoxib-treated induced-colitis rats. Our results showed that rats from groups 2 and 4 presented similar histopathological damage and macroscopic injury in the distal colon as depicted by significant statistically differences (P < 0.01; P < 0.05) compared to the other two groups. Weak expression of COX-2 mRNA was detected in normal colon cells, while higher levels of COX-2 mRNA were detected in group 2 and group 4. Therapy with lumiracoxib reduced COX-2 expression by 20–30%, but it was still higher and statistically significant compared to data obtained from the lumiracoxib control group. Treatment with the selective COX-2 inhibitor lumiracoxib did not reduce inflammation-associated colonic injury in TNBS-induced experimental colitis. Thus, the use of COX-2 inhibitors for treating IBD should be considered with caution and warrants further experimental investigation to elucidate their applicability.  相似文献   

10.
The two isoforms of cyclooxygenase, COX-1 and COX-2, are acetylated by aspirin at Ser-530 and Ser-516, respectively, in the cyclooxygenase active site. Acetylated COX-2 is essentially a lipoxygenase, making 15-(R)-hydroxyeicosatetraenoic acid (15-HETE) and 11-(R)-hydroxyeicosatetraenoic acid (11-HETE), whereas acetylated COX-1 is unable to oxidize arachidonic acid to any products. Because the COX isoforms are structurally similar and share approximately 60% amino acid identity, we postulated that differences within the cyclooxygenase active sites must account for the inability of acetylated COX-1 to make 11- and 15-HETE. Residues Val-434, Arg-513, and Val-523 were predicted by comparison of the COX-1 and -2 crystal structures to account for spatial and flexibility differences observed between the COX isoforms. Site-directed mutagenesis of Val-434, Arg-513, and Val-523 in mouse COX-2 to their COX-1 equivalents resulted in abrogation of 11- and 15-HETE production after aspirin treatment, confirming the hypothesis that these residues are the major isoform selectivity determinants regulating HETE production. The ability of aspirin-treated R513H mCOX-2 to make 15-HETE, although in reduced amounts, indicates that this residue is not an alternate binding site for the carboxylate of arachidonate and that it is not the only specificity determinant regulating HETE production. Further experiments were undertaken to ascertain whether the steric bulk imparted by the acetyl moiety on Ser-530 prevented the omega-end of arachidonic acid from binding within the top channel cavity in mCOX-2. Site-directed mutagenesis was performed to change Val-228, which resides at the junction of the main cyclooxygenase channel and the top channel, and Gly-533, which is in the top channel. Both V228F and G533A produced wild type-like product profiles, but, upon acetylation, neither was able to make HETE products. This suggests that arachidonic acid orientates in a L-shaped binding configuration in the production of both prostaglandin and HETE products.  相似文献   

11.
A series of 1,4- and 1,5-diaryl substituted 1,2,3-triazoles was synthesized by either Cu(I)-catalyzed or Ru(II)-catalyzed 1,3-dipolar cycloaddition reactions between 1-azido-4-methane-sulfonylbenzene 9 and a panel of various para-substituted phenyl acetylenes (4-H, 4-Me, 4-OMe, 4-NMe2, 4-Cl, 4-F). All compounds were used in in vitro cyclooxygenase (COX) assays to determine the combined electronic and steric effects upon COX-1 and COX-2 inhibitory potency and selectivity. Structure-activity relationship studies showed that compounds having a vicinal diaryl substitution pattern showed more potent COX-2 inhibition (IC50 = 0.03–0.36 μM) compared to their corresponding 1,3-diaryl-substituted counterparts (IC50 = 0.15 to >10.0 μM). In both series, compounds possessing an electron-withdrawing group (Cl and F) at the para-position of one of the aryl rings displayed higher COX-2 inhibition potency and selectivity as determined for compounds containing electron-donating groups (Me, OMe, NMe2). The obtained data show, that the central carbocyclic or heterocyclic ring system as found in many COX-2 inhibitors can be replaced by a central 1,2,3-triazole unit without losing COX-2 inhibition potency and selectivity. The high COX-2 inhibition potency of some 1,2,3-triazoles having a vicinal diaryl substitution pattern along with their ease in synthesis through versatile Ru(II)-catalyzed click chemistry make this class of compounds interesting candidates for further design and synthesis of highly selective and potent COX-2 inhibitors.  相似文献   

12.
A group of 1,3-diarylurea derivatives, possessing a methylsulfonyl pharmacophore at the para-position of the N-1 phenyl ring, in conjunction with a N-3 substituted-phenyl ring (4-F, 4-Cl, 4-Me, 4-OMe), were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl) urea (4e) as a potent COX-2 inhibitor (IC(50)=0.11 microM) with a high COX-2 selectivity index (SI=203.6) comparable to the reference drug celecoxib (COX-2 IC(50)=0.06 microM; COX-2 SI=405). The structure-activity data acquired indicate that the urea moiety constitutes a suitable scaffold to design new acyclic 1,3-diarylurea derivatives with selective COX-2 inhibitory activity.  相似文献   

13.
Aspergillus fumigatus ATCC 28282 converted phenylacetic acid into a new dihydroxylated compound (2,6-dihydroxyphenylacetic acid) which was identified as 2,6-dimethoxyphenylacetic acid methyl ester. Two other new metabolites have been isolated also and identified as orthohydroxyphenylacetic acid and meta-hydroxyphenylacetic acid.  相似文献   

14.
Introduction of nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzofuran inhibitor 2, resulted in the discovery of the more potent pyridofuran analogue 5. Subsequent introduction of small alkyl and alkoxy ligands into the pyridine ring resulted in further improvements in replicon potency. Replacement of the 4-chloro moiety on the pyrimidine core with a methyl group, and concomitant monoalkylation of the C-2 amino moiety resulted in the identification of several inhibitors with desirable characteristics. Inhibitor 41, from the monosubstituted pyridofuran and inhibitor 50 from the disubstituted series displayed excellent potency, selectivity (GAPDH/MTS CC(50)) and PK parameters in all species studied, while the selectivity in the thymidine incorporation assay (DNA·CC(50)) was low.  相似文献   

15.
Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.  相似文献   

16.
A series of racemic, diastereoisomeric aryl cyclopropylamines substituted with fluorine in the 2-position and electron-donating and electron-withdrawing groups on the aromatic ring have been prepared. These represent analogues of the classic MAO inhibitor tranylcypromine (trans-2-phenylcyclopropylamine, 1). Their activities as inhibitors of recombinant human liver monoamine oxidases A (MAO A) and B (MAO B) were determined. The trans-compounds were low micromolar inhibitors of both MAO A and MAO B with moderate MAO A selectivity while the less active cis-analogues were MAO B selective. In the trans-series, electron-withdrawing para-substituents increased the potency of MAO A inhibition while electron-donating groups such as methyl or methoxy had no influence on this activity. In contrast, aromatic ring substitution in the trans-series had essentially no effect on the inhibition of MAO B. The corresponding cis-compounds were shown to be 10-100 times less active against MAO A, while trans- and cis-compounds were quite similar in terms of inhibition of MAO B. The best MAO A/MAO B selectivity (7:1) in the trans-series was found for trans-2-fluoro-2-(para-trifluoromethylphenyl)cyclopropylamine (7d), while a 1:27 selectivity was found for cis-2-fluoro-2-(para-fluorophenyl)cyclopropylamine (10c). These results are discussed in connection with the pK(a) and logD values, the mechanism of action of tranylcypromines, and the geometry of the active site of the enzymes.  相似文献   

17.
Pharmacodynamic of cyclooxygenase inhibitors in humans   总被引:1,自引:0,他引:1  
We provide comprehensive knowledge on the differential regulation of expression and catalysis of cyclooxygenase (COX)-1 and COX-2 in health and disease which represents an essential requirement to read out the clinical consequences of selective and nonselective inhibition of COX-isozymes in humans. Furthermore, we describe the pharmacodynamic and pharmacokinetic characteristics of major traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) and coxibs (selective COX-2 inhibitors) which play a prime role in their efficacy and toxicity. Important information derived from our pharmacological studies has clarified that nonselective COX inhibitors should be considered the tNSAIDs with a balanced inhibitory effect on both COX-isozymes (exemplified by ibuprofen and naproxen). In contrast, the tNSAIDs meloxicam, nimesulide and diclofenac (which are from 18- to 29-fold more potent towards COX-2 in vitro) and coxibs (i.e. celecoxib, valdecoxib, rofecoxib, etoricoxib and lumiracoxib, which are from 30- to 433-fold more potent towards COX-2 in vitro) should be comprised into the cluster of COX-2 inhibitors. However, the dose and frequency of administration together with individual responses will drive the degree of COX-2 inhibition and selectivity achieved in vivo. The results of clinical pharmacology of COX inhibitors support the concept that the inhibition of platelet COX-1 may translate into an increased incidence of serious upper gastrointestinal bleeding but this effect on platelet COX-1 may mitigate the cardiovascular hazard associated with the profound inhibition of COX-2-dependent prostacyclin (PGI2).  相似文献   

18.
2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.  相似文献   

19.
A series of novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors was prepared via treatment of various diaryl amides with tetrachlorosilane/sodium azide. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles contained a methylsulfonyl or sulfonamide group as COX-2 pharmacophore displayed only low inhibitory potency towards COX-2. Most potent compounds showed IC(50) values of 6 and 7 μM for COX-2. All compounds showed IC(50) values greater 100 μM for COX-1 inhibition.  相似文献   

20.
A new group of 3-(4-substituted-phenyl)-4-(4-methylsulfonamidophenyl)-2(5H)furanones in which the methylsulfonyl (MeSO(2)) COX-2 pharmacophore present in rofecoxib was replaced by a methanesulfonamido (MeSO(2)NH) moiety, and where the substituent at the para-position of the C-3 phenyl ring was simultaneously varied (H, F, Cl, Br, Me, OMe), were evaluated to determine the combined effects of steric and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. Structure-activity relationship (SAR) studies showed that compounds having a neutral (H), or electronegative halogen (F, Cl, Br), substituent at the para-position of the C-3 phenyl ring inhibited both COX-1 and COX-2 with COX-2 selectivity indexes in the 3.1-39.4 range. In contrast, compounds having an electron-donating Me or OMe substituent were selective inhibitors of COX-2 (COX-1 IC(50)>100 microM). These SAR data indicate the 3-aryl-4-(4-methylsulfonamidophenyl)-2(5H)furanone scaffold provides a suitable template to design COX inhibitors with variable COX-2 selectivity indexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号