首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基底外侧杏仁核对睡眠-觉醒的调节作用   总被引:13,自引:0,他引:13  
Zhu GQ  Zhong MK  Zhang JX  Zhao LZ  Ke DP  Wang M  Shi L 《生理学报》1998,50(6):688-692
采用多道睡眠描记方法,观察了基底外侧杏仁核在睡眠-觉醒调节中的作用。结果发现,电损毁双侧BLN引起慢波睡眠和快波睡眠增加,觉醒减少;在双侧BLN内注射选择性损毁神经元胸体剂量的红藻氨酸引起双相效应,注射KA后第1天出现失眠,自第3天开始,SWS增多,W减少,但PS无显著变化。  相似文献   

2.
Variations of brain tissue redox state potential (E) of freely-moving white rats (300-350 g) in cycles of wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS) were measured by platinum electrodes symmetrically implanted into the frontal and occipital cortices and hippocampus. In addition, EMG of neck muscles and general motor activity of animals were recorded. The common reference electrode was implanted in the nasal bone. It was shown that in some brain sites (called active), episodes of W and PS were accompanied by a rise of E, and during transitions from W and PS to SWS, E dropped. The value of E varied in the range of 100 mV. It is suggested that transitions from W and PS to SWS are accompanied by shifts in the balance between the main energy sources. Oxidative phosphorylation prevails in W and PS, whereas aerobic glycolysis is the main source of energy during SWS. We think that this suggestion is supported both by a decrease in E in SWS and its oscillations typical of glucolytic processes [Aon et al., 1992]. Recent literature data [Bitter et al., 1996] suggest that astroglia is the main compartment for aerobic glycolysis.  相似文献   

3.
Lagos P  Monti JM  Jantos H  Torterolo P 《Life sciences》2012,90(23-24):895-899
AimsTo examine the effects of bilateral microinjection of melanin-concentrating hormone (MCH) 50 and 100 ng into the horizontal limb of the diagonal band of Broca (HDB) on sleep variables during the light phase of the light–dark cycle of the rat.Main methodsMale Wistar rats were implanted for chronic sleep recordings. In addition, a guide cannula was implanted above the right and left HDB. Following the microinjection of MCH or control solution the electroencephalogram and the electromyogram were recorded for 6 h. Data was collected and classified as either wakefulness (W), light sleep, slow wave sleep (SWS) or REM sleep (REMS). Latencies for SWS and REMS, as well as the number of REM periods and the mean duration of REM episodes were also determined.Key findingsMCH 50 and 100 ng significantly decreased W during the first 2-h of recording. Moreover, MCH 100 ng significantly reduced REMS latency and increased REMS time during the first 2-h block of the recording, due to an increase in the number of REM periods.SignificanceOur findings tend to suggest that the basal forebrain participates in the effects of MCH on W and REMS through the deactivation of cholinergic, glutamatergic and γ-aminobutyric acid (GABA)-ergic cells.  相似文献   

4.
To assess to what extent auditory sensory deprivation affects biological rhythmicity, sleep/wakefulness cycle and 24 h rhythm in locomotor activity were examined in golden hamsters after bilateral cochlear lesion. An increase in total sleep time as well as a decrease in wakefulness (W) were associated to an augmented number of W episodes, as well as of slow wave sleep (SWS) and paradoxical sleep (PS) episodes in deaf hamsters. The number of episodes of the three behavioural states and the percent duration of W and SWS increased significantly during the light phase of daily photoperiod only. Lower amplitudes of locomotor activity rhythm and a different phase angle as far as light off were found in deaf hamsters kept either under light-dark photoperiod or in constant darkness. Period of locomotor activity remained unchanged after cochlear lesions. The results indicate that auditory deprivation disturbs photic synchronization of rhythms with little effect on the clock timing mechanism itself.  相似文献   

5.
Electrographic and behavioural observations were conducted on two male and two female captive starlings (Sturnus vulgaris) under natural illumination conditions during autumn. Polygraphically sleep and wakefulness of starling were similar to those of other birds. Starling's total sleep (TS) and slow wave sleep (SWS) lasted 39.0 +/- 1.4% and 38.3 +/- 1.7% of the 24-h period respectively. Paradoxical sleep (PS) was 1.8 +/- 0.2% of the total sleep time. The mean durations individual of TS, SWS and PS episodes were 6.8 +/- 0.2 min, 5.0 +/- 1.0 min and 18 +/- 3 s respectively. The daily percentage of SWS was correlated with the mean episode duration while that of PS was correlated with the number of episodes rather than with the mean episode duration. Starling females spent in sleep a greater percentage of the 24-h period than males.  相似文献   

6.
Modification of the viscerosensory evoked potentials (EPs) were studied during the sleep-wakefulness cycle of the rat. Electrical stimuli of various intensity were delivered either to the mucosal surface of a fistula of the small intestine or to the left splanchnic nerve during wakefulness (W), drowsiness (D), slow-wave-sleep (SWS), and paradoxical sleep (PS). The average EPs were recorded from the somatosensory (SI and SII) and associative (AS) areas of the cortex, the ventrobasal complex of the thalamus (VPL), the posterior hypothalamus (HPT) and the dorsal hippocampus (HPC). The amplitude of each component of the EPs in all explored structures were the largest in SWS and the smallest in W. A phasic increase in amplitude was observed in the EPs recorded immediately before the appearance of the spindles of SWS and during the REM episodes of PS. The peak latencies of the late components were the longest in SWS. These changes of the amplitudes and latencies were greater in the responses to weak stimulation than in EPs to strong ones. The possible synaptic events of the sleep-dependent control of viscerosensory activity are discussed.  相似文献   

7.
Summary Sleep and wake states were monitored polygraphically in the rookCorvus frugilegus, under the natural photoperiod and temperature. The indices of sleep and wake states in the rook were similar to those described previously for birds in general. The appearance of sleep episodes was confined to the dark part of the photoperiod. Slow wave sleep (SWS) showed a tendency to increase during the course of the night, while paradoxical sleep (PS) showed the opposite trend. The distribution of short SWS episodes were clustered into two groups, one group occurred in the period following the onset of sleep and the other, less prominent group occurred towards the end of sleep. The longest episodes of SWS appeared in the second half of the night, whereas those of PS appeared after onset of sleep.Abbreviations EMG electromyogram - EOG electrooculogram - PS paradoxical sleep - SWS slow wave sleep - W wake state  相似文献   

8.
采用多导睡眠描记术研究了例脑室注射促甲状腺激素释放激素(TRH)对正常大鼠和去甲状腺大鼠睡眠-觉醒的影响。在正常大鼠,TRH引起觉醒增加,浅慢波睡眠(SWS_1)、深慢波睡眠(SWS_2)和总睡眠时间(TST)均减少,异相睡眠(PS)消失,SWS_1、SWS_2和PS的潜伏期均显著延长,给药后立即产生效应并在1h内达高峰。去甲状腺对大鼠的睡眠-觉醒无明显影响,注射TRH后引起的效应与正常大鼠相似。结果提示TRH有促进大鼠觉醒的作用,对各睡眠时相均有抑制作用,其作用部位可能在下丘脑以外的中枢结构。  相似文献   

9.
Variations occurring in cortical nitric oxide (NO) release were analysed with a voltametric method in rats (i) placed in control conditions, (ii) while being paradoxical sleep deprived (PSD), or (iii) recovering from a PSD. Activities of neuronal (nNOS) and inducible (iNOS) NO-synthases as well as nNOS expression were also determined in several brain regions. In baseline conditions, circadian variations in nNOS expression and activity were maximal during the dark period and minimal during the light one for all the structures analysed (frontal cortex, pons and medulla). In the same way, cortical NO release occurred through a circadian rhythm exhibiting maxima and minima during dark and light periods, respectively. In the same experimental conditions, iNOS activity did not exhibit time-dependent changes. The correlative changes observed in baseline conditions between NO release, nNOS expression and activity within the frontal cortex were disrupted during PSD and subsequent recovery. Still again, iNOS activity remained unchanged. Results obtained point out that the tight coupling existing in control conditions between nNOS expression-activity and NO release is disrupted by a PSD and remains affected during the subsequent 24 h recovery. Their significance is discussed.  相似文献   

10.
Ozone (O3) produces significant effects on sleep, characterized specially by a decrease in paradoxical sleep (PS) and increase in slow-wave sleep (SWS), which in turn represent a sleep-wake cycle disruption. On the other hand, neuronal activity recorded in the cholinoceptive hypothalamic medial preoptic area (MPO) has been involved in the regulation of sleep. However, there is no direct evidence on the role that acetylcholine (Ach) release in the MPO plays in the sleep-wake cycle. In order to study this relation, we measured the Ach concentration in dialysates collected from MPO in rats exposed to coal-filtered air (clean air) for 48 h and in rats exposed to clean air for 24 h followed by 24-h of O3 exposure to 0.5 ppm. Polygraphic sleep records were taken simultaneously to neurochemical sampling. O3 was employed to disrupt the sleep-wake cycle and relate these changes with concomitant disruptions in Ach concentration dialyzed from MPO. A clear circadian pattern of Ach concentration was observed in dialysates from MPO and also in PS, SWS and wakefulness of rats exposed to filtered air. However, O3 exposure decreased the PS by 65% (Mann-Whitney's U-test, p相似文献   

11.
In the rook, Corvus frugilegus, electrographic and behavioural correlates of sleep and wakefulness have been determined under natural lighting conditions. Slow wave sleep (SWS) was characterized by high amplitude slow EEG activity, low neck EMG, and behavioural inactivity. Paradoxical sleep (PS) was characterized by low amplitude fast EEG activity and inconsistent decrease in EMG. PS episodes always commenced with head downward. Several eye movements occurred activity were present. The rook spent in sleep 31.8% of the 24-h period. PS however, eye movements, high tonic neck EMG activity, and behavioural activity were present. The rook spent in sleep 31.8% of the 24-h period. PS constituted 1.8% of total sleep, while the rest of total sleep was occupied by SWS. On the average, episodes of SWS and PS lasted 10.8 min and 24 s respectively. The daily percentage of SWS was highly correlated with the mean episode duration. PS amount was better correlated with the number of episodes than with their mean duration. Our data suggest that over-short period of recovery from surgery and adaptation with implanted electrodes could lead to underestimation of sleep duration in rook.  相似文献   

12.
Sleep-enhancing effects of far-infrared radiation in rats   总被引:2,自引:0,他引:2  
Unrestrained male rats continuously exposed to far-infrared radiation exhibited a significant increase in slow wave sleep (SWS) during the light period but not in the dark period. The change was largely due to the elevated occurrence of SWS episodes but not to the prolongation of their duration. Paradoxical sleep was not affected throughout the observation period except for a significant decrease at the end of the dark period. Thus the far-infrared radiation exerted a sleep modulatory effect closely related to the circadian activity-rest cycle.  相似文献   

13.
The effects of classic conditioning on the viscerosensory evoked potentials (EPs) were studied in twenty cats during wakefulness (W), slow-wave-sleep (SWS) and paradoxical sleep (PS). Four types of the experiment were performed on four groups of animals. Weak, non-painful stimulation of the small intestine or of the left splanchnic nerve was used as conditional stimulus (CS) in all experiments. A painful or non-painful shock on the left radial nerve served as unconditional stimulus (US) which followed the CS with a delay of 500 ms. In the first and second series of experiments, the CS was paired with non-painful or painful CS during W. In the third and fourth types of experiment, weak US was used and conditioning was done during SWS or PS. The evoked responses were recorded from the primary (SI) and secondary (SII) somatosensory and associative (AS) cortex, the thalamus (VPL), hypothalamus (HPT) and dorsal hippocampus (HPC). In each experiment, the stimulus pairings resulted in a complex electrographic conditional response (CR) which included an amplitude increase of the late components of EP's (early CR) and the development of a wave of 500 ms latency (delayed CR). In the second experiment, however, a behavioural CR (limb flexion) also appeared. All these CRs proved to be extinguishable. The recall of CR established during W was successful in SWS. The traces of CS-US pairings during SWS could, however, be elicited only in SWS. Both establishment and recall of CR were unsuccessful during PS. The possible mechanism of the effects originating from an interaction of conditioning and sleep on the viscerosensory inputs of the brain are discussed.  相似文献   

14.
A comparison of sleep organization in Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats, which differ in the way they respond to environmental stimuli and in several neuroendocrine and neurochemical parameters, was carried out. EEG-sleep recordings were obtained from adult males over 12:12 light-dark periods to determine how these two psychogenetically selected rat lines might also differ in their sleep-wake cycle. There was no significant difference in total sleep time between the two lines. However, the (hypoemotional) RHA/Verh rats showed an overall increase (percentage of total sleep) in paradoxical sleep (PS) duration, with a concomitant decrease in slow-wave sleep (SWS). During the dark phase, RHA/Verh rats showed a shorter PS latency and a larger number of PS episodes. Hourly sleep scoring also revealed a more discontinuous pattern (total sleep and PS vs. SWS) during the dark phase in RHA/Verh rats. In relation to recognized neurochemical and neuroendocrine differences between them, these rat lines may prove useful in investigations of the neurobiological mechanisms underlying sleep regulation.  相似文献   

15.
Differential pulse voltammetry was used for 5-hydroxyindoleacetic acid (5-HIAA) detection in the rat caudate (n. Cd) and Raphe Dorsalis (n. RD) nuclei, in chronic experimental conditions. In the anterior and ventral part of n. RD, large increases in the extracellular concentrations of 5-HIAA were reported during slow wave sleep (SWS) and paradoxical sleep (PS) whereas a decrease occurred during waking. These variations could reflect the dendritic release of serotonin. In n. Cd, opposite variations of the extracellular concentrations of 5-HIAA were observed i.e. increase during waking state and decrease during SWS and PS.  相似文献   

16.
中缝背核5-羟色胺能神经元在睡眠调节中的作用研究   总被引:1,自引:0,他引:1  
目的:研究中缝背核(DRN)5-羟色胺(5-HT)能神经元在睡眠中的调节作用。方法:运用脑立体定位、核团微量注射和多导睡眠描记(PSG),观察DRN 5-HT能神经元对大鼠睡眠的影响。结果:DRN微量注射谷氨酸钠(L-Glu),大鼠睡眠减少,特别是深慢波睡眠(SWS2)明显减少,觉醒(W)增加;DRN微量注射海人酸(KA)和对氯苯丙氨酸(PCPA),大鼠SWS2和异相睡眠(PS)增加,W减少。结论:DRN 5-HT能神经元参与睡眠的调节,兴奋DRN 5-HT能神经元睡眠时间减少,抑制DRN 5-HT能神经元则具有促进睡眠的作用。  相似文献   

17.
Light-to-dark transitions have been found to enhance paradoxical sleep (PS) in albino rats but not pigmented rats. Furthermore, PS inducing effect of dark pulses in albino rats depends on sleep states. This study examined whether the relationship between PS and preceding non-rapid-eye-movement sleep (NREMS) in pigmented Brown Norway rats was different from that in albino F344 rats and whether such a difference was associated with different responses to dark pulses in the two rat strains. Both rat strains showed a positive relationship between PS and preceding NREMS. However, only the albino F344 rats exhibited the PS inducing effect of dark pulses. Dark pulses did not alter the relationship between PS and preceding NREMS in either rat strain, and, reciprocally, nor did duration of preceding NREMS affect dark pulse-induced PS enhancement. Furthermore, this study verified that dark pulses given during NREMS in albino F344 rats specifically induced the suppression of NREMS concomitant with the enhancement of PS. This study proposed that dark pulses might inhibit NREMS and facilitate PS regulating areas concurrently in albino rats.  相似文献   

18.
Dihydroergotoxine methane sulphonate (DHET 1.0 mg/kg i.p.) was administered to cats deprived of paradoxical sleep (PS) for 72 h and 23 h of recovery sleep were recorded. During the first 12 h of recovery sleep slow-wave sleep (SWS) was significantly increased. There were no significant changes in the amounts of wakefulness (W), PS and several sleep indices. Analysis of the entire 23 h of recording period revealed no significant changes in any of the parameters studied. The results suggest that DHET has SWS enhancing property in the condition where "pressure" for PS was increased.  相似文献   

19.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

20.
We have studied the effects of local injections of histaminergic and antihistaminic drugs on the sleep-waking cycle in the cat. Microinjections of alpha-fluoromethylhistidine (alpha-FMH), a specific inhibitor of histidine decarboxylase, in the ventrolateral posterior hypothalamus, where histamine-immunoreactive neurons have been recently identified, resulted in a significant decrease in wakefulness (W) and increase in deep slow wave sleep (SWS). On the other hand, microinjections of SKF-91488 (Homodimaprit), a specific inhibitor of histamine-N-methyltransferase, increased W and decreased SWS and paradoxical sleep (PS). Microinjections of histamine also produced an increase of W, while this effect was abolished by pretreatment with mepyramine, an H1-histamine receptor antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号