首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human blood group A and B antigens are produced by two closely related glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) utilizes UDP-GalNAc to extend H antigen acceptors (Fuc alpha(1-2)Gal beta-OR) producing A antigens, whereas a galactosyltransferase (GTB) utilizes UDP-Gal as a donor to extend H structures producing B antigens. GTA and GTB have a characteristic (211)DVD(213) motif that coordinates to a Mn(2+) ion shown to be critical in donor binding and catalysis. Three GTB mutants, M214V, M214T, and M214R, with alterations adjacent to the (211)DVD(213) motif have been identified in blood banking laboratories. From serological phenotyping, individuals with the M214R mutation show the B(el) variant expressing very low levels of B antigens, whereas those with M214T and M214V mutations give rise to A(weak)B phenotypes. Kinetic analysis of recombinant mutant GTB enzymes revealed that M214R has a 1200-fold decrease in k(cat) compared with wild type GTB. The crystal structure of M214R showed that DVD motif coordination to Mn(2+) was disrupted by Arg-214 causing displacement of the metal by a water molecule. Kinetic characterizations of the M214T and M214V mutants revealed they both had GTA and GTB activity consistent with the serology. The crystal structure of the M214T mutant showed no change in DVD coordination to Mn(2+). Instead a critical residue, Met-266, which is responsible for determining donor specificity, had adopted alternate conformations. The conformation with the highest occupancy opens up the active site to accommodate the larger A-specific donor, UDP-GalNAc, accounting for the dual specificity.  相似文献   

3.
4.
Human serum was fractionated by high resolution agarose isoelectricfocusing and the galactosyltransferase activity profile was determined using the ovalbumin, mucin, glucose and N-acetylglucosamine acceptor assays. The four acceptors gave very similar activity profiles. There were minor quantitative differences in some of the 12 or more peaks of activity detected and the only qualitative difference between them was a minor peak at pH 3.90 (2% of the total activity) which reacted only with the mucin acceptor. This suggests that most of the isoenzymes of human serum galactosyltransferase have broad and similar acceptor specificities and that the heterogeneity seen in serum cannot be accounted for by acceptor-specific forms of the enzyme.  相似文献   

5.
Saturation transfer difference NMR experiments on human blood group B alpha-(1,3)-galactosyltransferase (GTB) for the first time provide a comprehensive set of binding epitopes of donor substrate analogs in relation to the natural donor UDP-Gal. This study revealed that the enzyme binds several UDP-activated sugars, including UDP-Glc, UDP-GlcNAc, and UDP-GalNAc. In all cases, UDP is the dominant binding epitope. To identify the minimum requirements for specific binding, a detailed analysis utilizing a fragment-based approach was employed. The binding of donor substrate to GTB is essentially controlled by the base as a "molecular anchor." Uracil represents the smallest fragment that is recognized, whereas CDP, AMP, and GDP do not exhibit any significant binding affinity for the enzyme. The ribose and beta-phosphate moieties increase the affinity of the ligands, whereas the pyranose sugar apparently weakens the binding, although this part of the molecule controls the specificity of the enzyme. Accordingly, UDP represents the best binder. The binding affinities of UDP-Gal, UDP-Glc, and UMP are about the same, but lower than that of UDP. Furthermore, we observed that beta-D-galactose and alpha-D-galactose bind weakly to GTB. Whereas beta-D-galactose binds to the acceptor and donor sites, it is suggested that alpha-D-galactose occupies a third hitherto unknown binding pocket. Finally, our experiments revealed that modulation of enzymatic activity by metal ions critically depends on the total enzyme concentration, raising the question as to which of the bivalent metal cations Mg(2+) and Mn(2+) is more relevant under physiological conditions.  相似文献   

6.
Blood group A and B antigens are carbohydrate structures that are synthesized by glycosyltransferase enzymes. The final step in B antigen synthesis is carried out by an alpha1-3 galactosyltransferase (GTB) that transfers galactose from UDP-Gal to type 1 or type 2, alphaFuc1-->2betaGal-R (H)-terminating acceptors. Similarly the A antigen is produced by an alpha1-3 N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine from UDP-GalNAc to H-acceptors. Human alpha1-3 N-acetylgalactosaminyltransferase and GTB are highly homologous enzymes differing in only four of 354 amino acids (R176G, G235S, L266M, and G268A). Single crystal x-ray diffraction studies have shown that the latter two of these amino acids are responsible for the difference in donor specificity, while the other residues have roles in acceptor binding and turnover. Recently a novel cis-AB allele was discovered that produced A and B cell surface structures. It had codons corresponding to GTB with a single point mutation that replaced the conserved amino acid proline 234 with serine. Active enzyme expressed from a synthetic gene corresponding to GTB with a P234S mutation shows a dramatic and complete reversal of donor specificity. Although this enzyme contains all four "critical" amino acids associated with the production of blood group B antigen, it preferentially utilizes the blood group A donor UDP-GalNAc and shows only marginal transfer of UDP-Gal. The crystal structure of the mutant reveals the basis for the shift in donor specificity.  相似文献   

7.
A low-molecular-weight acceptor of galactosyltransferase activity was detected in sera and effusions of patients with extensive maligant disease. This substance was purified to homogeneity from both human serum and effusion by using sequential charcoal/Celite and DEAE-cellulose column chromatography. The purified acceptor was shown to act as substrate for both purified normal and cancer-associated human galactosyltransferase (EC 2.4.1.22) isoenzymes, but had a higher affinity for the cancer-associated isoenzyme (Km = 20 microM) than for the normal isoenzyme (Km = 500 microM). The substrate was found to be a glycopeptide with mol.wt. approx. 3600 determined by polyacrylamide-gel chromatography. Carbohyydate analysis demonstrated only the presence of glucosamine and mannose. Amino acid analysis revealed that the peptide moiety consisted of eight different amino acids, including two residues of asparagine and one residue of serine, but no threonine. These structural data suggest that the acceptor is a fraction of an asparagine-glucosamine type of glycoprotein.  相似文献   

8.
Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA.  相似文献   

9.
A galactosyltransferase, which converts blood group O red bloodcells to B-cells, was purfied to homogeneity from plasma of blood group B subjects. The stepwise purification procedures include: (a) column chromatography with CM-Sephadex, followed by ammonium sulfate fractionation; (b) Sephadex G-200 gel filtration; (c) column chromatogr,phy with DEAE-Sephadex; and (d) column chromatography with hydroxylapatite. The procedures provided about a 400,000-fold increase of specific activity with a 40 to 50% yield. Further purification of the enzyme was performed by small scale preparative acrylamide gel electrophoresis at pH 4.3. The final enzyme preparation showed a single protein band which coincided with enzyme activity, in acrylamide gel electrophoresis, and revealed a single protein band in sodium dodecyl sulfate-gel electrophoresis. Judging from the molecular weight, which was estimated by Sephadex gel filtration, and subunit size estimated by sodium dodecyl sulfate-gel electrophoresis, the enzyme is presumably in a dimeric form. The enzyme required Mn2+ for its activity and had a pH optimum at 7.0 to 7.5.  相似文献   

10.
The binding of cob(II)alamin (CblII) and 5'-deoxyadenosine to diol dehydrase was studied spectroscopically and with [U-14C]5'-deoxyadenosine. CblII was bound to this enzyme forming a tight 1:1 complex which was resistant to oxidation by O2 even in the presence of CN-. An irreversible 1:1:1 ternary complex was formed between enzyme, CblII, and 5'-deoxyadenosine, when the enzyme was incubated first with the nucleoside and then with CblII. When this order of addition of the constituents was reversed, no 5'-deoxyadenosine was bound to the enzyme-CblII complex. Hydroxocobalamin could also bind to the enzyme together with the nucleoside, while other cob(III)alamins bearing a bulkier Co beta ligand displaced the nucleoside upon binding to the enzyme. The binding of [U-14C]5'-deoxyadenosine was strongly inhibited by unlabeled 5'-deoxy-ara-adenosine, 4',5'-anhydroadenosine, adenosine, adenine, and 5',8-cyclic adenosine, in this order, but not by 5'-deoxyuridine. These results constitute direct evidence for the presence of the binding site for the adenosyl group of adenosylcobalamin, which is spatially limited to and highly specific for adenine nucleosides. The binding of 5'-deoxyadenosine to the apoenzyme was reversible.  相似文献   

11.
The human interferon receptor (IFNAR) mediates the antiviral and antiproliferative activities of type I interferons (IFNs). This receptor is comprised of subunits IFNAR1 and IFNAR2, the latter exhibiting nanomolar affinity for IFNs. Here the extracellular domain of IFNAR2 (IFNAR2-EC), a soluble 25 kDa IFN-binding polypeptide, and its complex with IFN-alpha 2 were studied using multidimensional NMR. IFNAR2-EC is comprised of two fibronectin-III (FN-III) domains connected by a helical hinge region. The deduced global fold was utilized to improve the alignment of IFNAR2-EC against structurally related receptors and to model its structure. A striking feature of IFNAR2-EC is the limited and localized deviations in chemical shifts exhibited upon ligand binding, observed for only 15% of its backbone (1)H and (15)N nuclei. Analysis of these deviations maps the IFN-alpha 2 binding site upon IFNAR2-EC to a contiguous surface on the N-terminal domain, including the S3-S4 loop (residues 44-53), the S5-S6 loop and S6 beta-strand (residues 74-82), and the S7 beta-strand and the hinge region (residues 95-105). The C-terminal domain contributes only marginally to ligand binding, and no change in the hypothesized interdomain interface is observed. The proposed binding domain encompasses all residues implicated by mutagenesis studies in IFN binding, and suggests adjacent residues cooperate in forming the binding surface. D(2)O-exchange experiments indicate that binding of IFN-alpha2 induces tightening of the N-terminal domain of IFNAR2-EC. This increase in receptor rigidity may play an important role in initiating the intracellular stage of the IFN signaling cascade.  相似文献   

12.
Type I interferons (IFNs) are a family of homologous helical cytokines that exhibit pleiotropic effects on a wide variety of cell types, including antiviral activity and antibacterial, antiprozoal, immunomodulatory, and cell growth regulatory functions. Consequently, IFNs are the human proteins most widely used in the treatment of several kinds of cancer, hepatitis C, and multiple sclerosis. All type I IFNs bind to a cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. The structure of the extracellular domain of IFNAR2 (R2-EC) was solved recently. Here we study the complex and the binding interface of IFNalpha2 with R2-EC using multidimensional NMR techniques. NMR shows that IFNalpha2 does not undergo significant structural changes upon binding to its receptor, suggesting a lock-and-key mechanism for binding. Cross saturation experiments were used to determine the receptor binding site upon IFNalpha2. The NMR data and previously published mutagenesis data were used to derive a docking model of the complex with an RMSD of 1 Angstrom, and its well-defined orientation between IFNalpha2 and R2-EC and the structural quality greatly improve upon previously suggested models. The relative ligand-receptor orientation is believed to be important for interferon signaling and possibly one of the parameters that distinguish the different IFN I subtypes. This structural information provides important insight into interferon signaling processes and may allow improvement in the development of therapeutically used IFNs and IFN-like molecules.  相似文献   

13.
14.
15.
The complex N-AcPhe-tRNA(Phe).poly(U).80 S ribosome from human placenta was treated with puromycin taken in various concentrations. Based on the kinetic data of N-acetylphenylalanyl-puromycin formation, the association constant of puromycin with the acceptor site of the ribosome was estimated to be (3.96 +/- 0.84) x 10(4) M-1 at 37 degrees C.  相似文献   

16.
17.
It is generally accepted that the blood group subtypes A1 and A2 expressions are controlled by two different blood group N-acetylgalactosaminyl-transferases, that is, A1-enzyme and A2-enzyme, respectively, and that the two types of enzymes are governed by the allelic A1 and A2 genes. The observed frequencies of blood types in Caucasians are compatible to this model. However, the subtype A2 character is far more frequently observed in AB red cells than in A red cells in some black and Oriental populations. Two black blood samples with phenotype A2B contained A1-enzyme, but not A2-enzyme, and exhibited several times higher B-enzyme activity than control AB and B blood. The kinetic properties, that is, pH-activity profile and Km for UDP-Gal, of the B-enzyme from these two A2B subjects differed from that of control B-enzyme. In these two cases, therefore, the A2 character was not caused by the subactive A2-enzyme, but because of an insufficient formation of the A-substances in red cell membranes presumably caused by the competition between the A1-enzyme and the super active atypical B-enzyme at the common H-sites. The results suggest that the B gene can be subdivided into usual B1 and atypical B2, and that not only A2B subjects but also A1B2 subjects could express A2 character in their red cells. The B2 gene may be common in certain black and Oriental populations.  相似文献   

18.
Zhang Y  Deshpande A  Xie Z  Natesh R  Acharya KR  Brew K 《Glycobiology》2004,14(12):1295-1302
Aromatic amino acids are frequent components of the carbohydrate binding sites of lectins and enzymes. Previous structural studies have shown that in alpha-1,3 galactosyltransferase, the binding site for disaccharide acceptor substrates is encircled by four tryptophans, residues 249, 250, 314, and 356. To investigate their roles in enzyme specificity and catalysis, we expressed and characterized variants of the catalytic domain of alpha-1,3 galactosyltransferase with substitutions for each tryptophan. Substitution of glycine for tryptophan 249, whose indole ring interacts with the nonpolar B face of glucose or GlcNAc, greatly increases the K(m) for the acceptor substrate. In contrast, the substitution of tyrosine for tryptophan 314, which interacts with the beta-galactosyl moiety of the acceptor and UDP-galactose, decreases k(cat) for the galactosyltransferase reaction but does not affect the low UDP-galactose hydrolase activity. Thus, this highly conserved residue stabilizes the transition state for the galactose transfer to disaccharide but not to water. High-resolution crystallographic structures of the Trp(249)Gly mutant and the Trp(314)Tyr mutant indicate that the mutations do not affect the overall structure of the enzyme or its interactions with ligands. Substitutions for tryptophan 250 have only small effects on catalytic activity, but mutation of tryptophan 356 to threonine reduces catalytic activity for both transferase and hydrolase activities and reduces affinity for the acceptor substrate. This residue is adjacent to the flexible C-terminus that becomes ordered on binding UDP to assemble the acceptor binding site and influence catalysis. The results highlight the diverse roles of these tryptophans in enzyme action and the importance of k(cat) changes in modulating glycosyltransferase specificity.  相似文献   

19.
Affinities of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB) for their common acceptor substrate alpha-l-Fucp-(1-->2)-beta-d-Galp-O(CH2)(7)CH3 (1), in the absence and presence of bound uridine 5'-diphosphate (UDP) and Mn2+ were determined using temperature-controlled electrospray ionization mass spectrometry. The presence of bound UDP and Mn(2+) in the donor binding site has a marked influence on the thermodynamic parameters for the association of 1 with GTA and GTB. Both the enthalpy and entropy of association (DeltaH(a), DeltaS(a)) decrease significantly. However, the free energy of association (DeltaG(a)) is unchanged at physiological temperature. The differences in the DeltaH(a) and DeltaS(a) values determined in the presence and absence of bound UDP are attributed to structural changes in the glycosyltransferases induced by the simultaneous binding of 1 and UDP.  相似文献   

20.
An expression vector, pIN-GT, encoding the soluble form of beta 1,4-galactosyltransferase (GT) has been constructed from human GT cDNAs and the pIN-III-ompA2 expression vector. Escherichia coli strain SB221 harboring the pIN-GT plasmid produces and secretes a fusion protein consisting of the ompA signal and GT. The expression of GT was detected by assaying enzymatic activity as well as by Western blotting using anti-GT antibodies. The recombinant GT was purified to homogeneity by N-acetylglucosamine-Sepharose affinity chromatography. The NH2-terminal peptide sequence of purified GT confirmed the cleavage site of the fusion protein by bacterial signal peptidase. This expression system was utilized to produce mutant forms of GT in order to identify specific amino acids involved in substrate binding sites. Photoaffinity labeling of GT with UDP-galactose analog, 4-azido-2-nitrophenyluridylylpyrophosphate (ANUP), followed by cyanogen bromide (CNBr) cleavage revealed that ANUP bound to a fragment of GT composed of amino acid residues from Asp276 to Met328. Within this peptide segment, Tyr284, Tyr287, Tyr309, Trp310 and Trp312 were separately substituted into Gly and Tyr287 into Phe by site-directed mutagenesis. Enzymatic activity assay showed drastic reduction of the activity in all of the mutants except that Tyr287----Phe remained as active as wild-type GT. Kinetic studies of the mutated GT showed that Tyr284, Tyr309 and Trp310 are critically involved in the N-acetyglucosamine binding and Tyr309 is involved in UDP-galactose binding as well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号