首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

2.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

3.
Summary Renal injury is a common side effect of the chemotherapeutic agent ifosamide. Current evidence suggests that the ifosfamide metabolite chloroacetaldehyde may contribute to this nephrotoxicity. The present study examined the effects of ifosfamide and chloroacetaldehyde on rabbit proximal renal tubule cells in primary culture. The ability of the uroprotectant medication sodium 2-mercaptoethanesulfonate (mesna) to prevent chloroacetaldehyde-induced renal cell injury was also assessed. Chloroacetaldehyde (12.5–150 μM) produced dose-dependent declines in neutral red dye uptake, ATP levels, glutathione content, and cell growth. Coadministration of mesna prevented chloroacetaldehyde toxicity while pretreatment of cells with the glutathione-depleting agent buthionine sulfoximine enhanced the toxicity of chloroacetaldehyde. Ifosfamide (1000–10 000 μM) toxicity was detected only at concentrations of 4000 μM or greater. Analysis of media collected from ifosfamide-treated cell cultures revealed the presence of several ifosfamide metabolites, demonstrating that renal proximal tubule cells are capable of biotransforming this chemotherapeutic agent. This primary renal cell culture system should prove useful in studying the cause and prevention of ifosfamide nephrotoxicity.  相似文献   

4.
Direct stereoselective separation on chiral stationary phase was developed for HPLC analysis of the four stereoisomers of alpha-hydroxymetoprolol in human plasma and urine. Plasma samples were prepared using solid-phase extraction columns and urine samples were prepared by liquid-liquid extraction. The stereoisomers were separated on a Chiralpak AD column at 24 degrees C with fluorescence detection and a mobile phase consisting of a mixture of hexane:ethanol:isopropanol:diethylamine (88:10.2:1.8:0.2) for plasma samples and hexane:ethanol:diethylamine (88:12:0.2) for urine samples. Calibration curves for the individual stereoisomers were linear within the concentration range of 2.0-200 ng/ml plasma or 0.125-25 microg/ml urine. The methods were validated with intra- and interday variations less than 15%. The absolute configuration of the pure stereoisomers were assigned by circular dichroism spectra. The methods were employed to determine the concentrations of alpha-hydroxymetoprolol stereoisomers in a metabolism study of multiple-dose administration of racemic metoprolol to hypertensive patients phenotyped as extensive metabolizers of debrisoquine. We observed stereo-selectivity in the alpha-hydroxymetoprolol formation favoring the new 1'R chiral center from both metoprolol enantiomers (AUC(0-24) (1'R1'S) = 3.02). The similar renal clearances (Cl(R)) of the four stereoisomers demonstrated absence of stereoselectivity in their renal excretion. (-)-(S)-metoprolol was slightly more alpha-hydroxylated than its antipode (AUC(0-24) (2S/2R) = 1.19), suggesting that this pathway is not responsible for plasma accumulation of this enantiomer in humans.  相似文献   

5.
Zhao M  Li LP  Sun DL  Sun SY  Huang SD  Zeng S  Jiang HD 《Chirality》2012,24(5):368-373
Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.  相似文献   

6.
Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.  相似文献   

7.
In this study, tetrahydrocannabinols (THCs) were mainly oxidized at the 11-position and allylic sites at the 7alpha-position for Delta(8)-THC and the 8beta-position for Delta(9)-THC by human hepatic microsomes. Cannabinol (CBN) was also mainly metabolized to 11-hydroxy-CBN and 8-hydroxy-CBN by the microsomes. The 11-hydroxylation of three cannabinoids by the microsomes was markedly inhibited by sulfaphenazole, a selective inhibitor of CYP2C enzymes, while the hydroxylations at the 7alpha-(Delta(8)-THC), 8beta-(Delta(9)-THC) and 8-positions (CBN) of the corresponding cannabinoids were highly inhibited by ketoconazole, a selective inhibitor of CYP3A enzymes. Human CYP2C9-Arg expressed in the microsomes of human B lymphoblastoid cells efficiently catalyzed the 11-hydroxylation of Delta(8)-THC (7.60 nmol/min/nmol CYP), Delta(9)-THC (19.2 nmol/min/nmol CYP) and CBN (6.62 nmol/min/nmol CYP). Human CYP3A4 expressed in the cells catalyzed the 7alpha-(5.34 nmol/min/nmol CYP) and 7beta-hydroxylation (1.39 nmol/min/nmol CYP) of Delta(8)-THC, the 8beta-hydroxylation (6.10 nmol/min/nmol CYP) and 9alpha,10alpha-epoxidation (1.71 nmol/min/nmol CYP) of Delta(9)-THC, and the 8-hydroxylation of CBN (1.45 nmol/min/nmol CYP). These results indicate that CYP2C9 and CYP3A4 are major enzymes involved in the 11-hydroxylation and the 8-(or the 7-) hydroxylation, respectively, of the cannabinoids by human hepatic microsomes. In addition, CYP3A4 is a major enzyme responsible for the 7alpha- and 7beta-hydroxylation of Delta(8)-THC, and the 9alpha,10alpha-epoxidation of Delta(9)-THC.  相似文献   

8.
The metabolism of diazinon, an organophosphorothionate pesticide, to diazoxon and pyrimidinol has been studied in incubations with hepatic microsomes from control Sprague–Dawley (SD) rats or SD rats treated with different P450‐specific inducers (phenobarbital, dexamethasone, β‐napthoflavone, and pyrazole). Results obtained indicate an involvement of CYP2C11, CYP3A2, and CYP2B1/2, whereas CYP2E1 and CYP1A1 do not contribute to the pesticide oxidative metabolism. Indeed, diazinon was metabolized by microsomes from control rats; among the inducers, phenobarbital and dexamethasone only increased the production of either metabolites, although to different extents. The production of the two metabolites is self‐limiting, due to P450 inactivation; therefore, the inhibition of CYP‐specific monooxygenase activities after diazinon preincubation has been used to selectively identify the competent CYPs in diazinon metabolism. Results indicate that, after diazinon preincubation, CYP3A2‐catalyzed reactions (2β‐ and 6β‐testosterone hydroxylation) are very efficiently inhibited; CYP2C11‐ and CYP2B1/2‐catalyzed reactions (2α‐ and 16β‐testosterone hydroxylation, respectively) are weakly inhibited, while CYP2E1‐, CYP2A1/2‐, and CYP1A1/2‐related activities were unaffected. Results obtained by using chemical inhibitors or antibodies selectively active against specific CYPs provide a direct evidence for the involvement of CYP2C11, CYP3A2, and CYP2B1/2, indicating that each of them contributed about 40–50% of the diazinon metabolism, in hepatic microsomes from untreated, phenobarbital‐, and dexamethasone‐treated rats, respectively. The higher diazoxon/pyrimidinol ratio observed after phenobarbital‐treatment together with the significantly more effective inhibition toward diazoxon production exerted by metyrapone in microsomes from phenobarbital‐treated rats supports the conclusion that CYP2B1/2 catalyze preferentially the production of diazoxon. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 53–61, 1999  相似文献   

9.
Improvement of CYP2B6 expression was examined by co-expression with molecular chaperones GroES/EL. Although a CO-reduced difference spectrum was not detected in Escherichia coli transformed only by the CYP2B6-expressing vector, co-expression of GroES/EL resulted in high-level expression which reached over 2000 nmol P450/L. CYP2B6 was purified from the E. coli membrane with a high yield. Purified CYP2B6 showed 7-ethoxy-4-trifluoromethylcoumarin O-deethylase activity in a reconstitution system. This expression system would be useful for the production of large amounts of active CYP2B6 and for the detailed analysis of the enzyme.  相似文献   

10.
Abstract

Context: Ifosfamide (IFA) is an effective antineoplastic for solid tumours in children, although it is associated with high levels of systemic toxicity and causes death in some cases.

Objective: The aim of this study was to determine whether the presence of certain allelic variants of genes CYP2B6, CYP2C9, CYP3A4 and CYP3A5 increases the risk of toxicity in children with solid tumours treated with ifosfamide.

Materials and methods: A total of 131 DNA samples were genotyped by real-time polymerase chain reaction (RT-PCR) using TaqMan probes. Toxicity was assessed using WHO criteria, and survival analysis was performed using Kaplan–Meier curves.

Results: The rs3745274 allelic variant in CYP2B6 was associated with haematological toxicity, affecting neutrophils; CYP3A4 variant rs2740574 was also associated with toxicity, affecting both leukocytes and neutrophils. Additionally, the CYP3A5 gene variant rs776746 was found to affect haemoglobin.

Conclusions: Our results show that allelic variants rs3745274 (CYP2B6), rs2740574 (CYP34) and rs776746 (CYP3A5) increase the risk for high haematological toxicity.

Clinical trial registration: 068/2013  相似文献   

11.
12.
The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 3-OH-AAF 3-hydroxy-2-acetylaminofluorene - 5/9-OH-AAF a combination of 5 and 9-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8-OH-AAF 8-hydroxy-2-acetylaminofluorene  相似文献   

13.
The objective of this study was to investigate the effect of phenytoin (PHE) on cyclophosphamide (CP) disposition. CP was administered to 6 adult patients in a preparative regimen for bone marrow transplantation consisting of busulfan and CP. Three of the patients received PHE and the other 3 “control” patients received diazepam (DZP) as anti‐epileptic prophylactic treatment. Plasma samples were collected at intervals up to 24 h after CP administration. The plasma concentrations of (R)‐ and (S)‐CP and their respective N‐dechloroethylated metabolites, (R)‐ and (S)‐DCE‐CP were simultaneously fitted using an enantiospecific 2‐compartment pharmacokinetic (PK) model with Bayesian control estimation. DZP had no significant effect on the metabolism of CP and any of its PK parameters. PHE, however, increased significantly the formation of (S)‐DCE‐CP while having no effect on the formation of (R)‐DCE‐CP. These results suggest that different enzymes are responsible for the formation of (S)‐DCE‐CP from (S)‐CP and (R)‐DCE‐CP from (R)‐CP. Additionally, assuming that PHE does not affect the passive renal elimination of (R)‐ and (S)‐CP, this analysis suggests that the clearance of both (R)‐ and (S)‐CP to 4‐hydroxy‐CP (the activation pathway) is increased by PHE. Chirality 11:569–574, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
We introduced two novel types of pig (Sus scrofa) cytochrome P450, CYP2B22 and CYP2C49, into rice plants (Oryza sativa L. cv. ‘Nipponbare’) to produce herbicide-tolerant plants and to confirm the metabolic activities of the cytochrome P450 species. In germination tests, both types of transgenic plants showed tolerance to various herbicides with different modes of action. CYP2B22 rice plants showed tolerance towards 12 herbicides including chlortoluron (100 μM), amiprofos-methyl (2.5 μM), pendimethalin (10 μM), metolachlor (2.5 μM), and esprocarb (20 μM). CYP2C49 rice plants showed tolerance towards 13 herbicides, including chlortoluron (100 μM), norflurazon (0.5 μM), amiprofos-methyl (2.5 μM), alachlor (0.8 μM), and isoxaben (1 μM). The herbicide tolerance was considered to reflect the substrate specificity of the introduced P450 species. We used 14C-labeled metolachlor and norflurazon to confirm the P450 activity in the transgenic rice plants. The herbicides were metabolized more quickly in the transgenic rice plants than in the nontransgenic rice plants. Therefore, CYP2B22 and CYP2C49 rice plants became more tolerant to various herbicides than nontransgenic control plants because of accelerated metabolism of the herbicides by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, these transgenic rice plants may become useful tools for the breeding of herbicide-tolerant crops.  相似文献   

15.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   

16.
The effects of a newly-developed ketolide antibiotic, telithromycin, on the metabolism of theophylline and the expression of hepatic cytochrome P450 (CYP) 1A2 and CYP3A2 were investigated in rats. Telithromycin at a high dose (100 mg/kg of body weight) was injected intraperitoneally once a day for 3 days. Twenty-four hours (day 4) after the final administration of telithromycin, theophylline (10 mg/kg) was administered intravenously. The presence of telithromycin significantly delayed the disappearance of theophylline from plasma. Parameters related to the pharmacokinetic interaction between theophylline and telithromycin were examined by noncompartmental methods. A significant decrease in the systemic clearance of theophylline was observed in the presence of telithromycin. Pretreatment with telithromycin significantly decreased the metabolic clearance of the major metabolites, 1-methyluric acid and 1,3-dimethyluric acid, with no change in the renal clearance of theophylline, suggesting that the decreased systemic clearance of theophylline by telithromycin is due to reduction of their metabolic clearance. Pretreatment with telithromycin significantly decreased the activity of 7-ethoxyresorufin O-deethylation and testosterone 6 beta-hydroxylation, suggesting that telithromycin decreases the activity of hepatic CYP1A2 and CYP3A2. Western blot analysis revealed that telithromycin significantly decreased the protein levels of CYP1A2 and CYP3A2 in the liver, which could explain the observed decreases in the systemic clearance of theophylline and metabolic clearance of 1-methyluric acid and 1,3-dimethyluric acid. The present study suggests that telithromycin at the dose used in this study alters the pharmacokinetics and metabolism of theophylline, due to reductions in the activity and expression of hepatic CYP1A2 and CYP3A2.  相似文献   

17.
Myclobutanil, (RS)‐2‐(4‐chlorophenyl)‐2‐(1H‐1, 2, 4‐triazol‐1‐ylmethyl) hexanenitrile is a widely used triazole fungicide. In this study, enantioselective metabolism and cytotoxicity were investigated in rat hepatocytes by chiral HPLC‐MS/MS and the methyl tetrazolium (MTT) assay, respectively. Furthermore, tryptophan metabolism disturbance in rat hepatocytes after myclobutanil exposure was also evaluated by target metabolomics method. The half‐life (t1/2) of (+)‐myclobutanil was 10.66 h, whereas that for (?)‐myclobutanil was 15.07 h. Such results indicated that the metabolic process of myclobutanil in rat hepatocytes was enantioselective with an enrichment of (?)‐myclobutanil. For the cytotoxicity research, the calculated EC50 (12h) values for rac‐myclobutanil, (+)‐ and (?)‐myclobutanil were 123.65, 150.65 and 152.60 µM, respectively. The results of tryptophan metabolites profiling showed that the levels of kynurenine (KYN) and XA were both up‐regulated compared to the control, suggesting the activation effect of the KYN pathway by myclobutanil and its enantiomers which may provide an important insight into its toxicity mechanism. The data presented here could be useful for the environmental hazard assessment of myclobutanil. Chirality 27:643–649, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Potential mechanisms were investigated whereby CYP2B18, a cytochrome P450 gene exhibiting high constitutive expression but only low levels of phenobarbital-inducibility in the guinea pig liver, may be differentially regulated versus the highly inducible rat CYP2B2 gene. To comparatively assess potential regulatory sequences associated with CYP2B18, a guinea pig genomic library was screened enabling isolation of the CYP2B18 gene. The genomic screening process resulted in the identification of at least four closely-related CYP2B18 genes, designated here as CYP2B18A-D. Of these isolates, CYP2B18A exhibited sequence identical to that of the CYP2B18 cDNA. Further, the deduced amino acid sequence of the CYP2B18 cDNA was identical to that of N-terminal and internally-derived peptide sequences obtained in this investigation from CYP2B18 protein isolated from guinea pig liver. Genomic structural sequences were derived for CYP2B18A, together with the respective 5'-upstream and intronic regions of the gene. Comparison of the CYP2B18A and CYP2B2 gene sequences revealed the lack of repetitive LINE gene sequences in CYP2B18A, putative silencing elements that effect neighboring genes, although these sequences were present in both 5'-upstream and 3'-downstream regions of CYP2B2. We determined that the phenobarbital-responsive enhancer module was absent from the 5'-upstream region as well as the intronic regions of CYP2B18A gene. We hypothesize that the compromised phenobarbital inducibility of CYP2B18A stems from its lack of a functional phenobarbital responsive enhancer module.  相似文献   

19.
Ifosfamide is an alkylating chemotherapeutic agent that exhibits activity against a wide range of tumors. Exposure to such agent just prior to mating (preconception period) may have adverse effects on developing embryos. I investigated the rate of apoptosis and the histological changes in both placenta and developing fetal tissues after exposure to ifosfamide of young female rats before mating. I clarified the roles of the drug and the placenta in causing fetal developmental toxicity. Rats were divided into four groups: (1) untreated controls, (2) rats administered saline, (3 and 4) rats administered 25 mg/kg and 50 mg/kg ifosfamide, respectively. After treatment of females with ifosfamide, the treated females were allowed to mate with normal untreated males. All pregnant animals were sacrificed on day 18 of gestation. Treatment with high doses of ifosfamide caused small placentas, fewer viable fetuses, greater post-implantation losses and more resorbed fetuses. Reduced progesterone and increased prolactin levels also were found. Immunohistochemical staining, the TUNEL technique and histological studies showed increased apoptotic cells and many histological changes in the placenta, and in fetal brain, liver and kidney tissues. Ifosfamide treatment increased apoptosis and caused hypoplasia of placental basal and labyrinth zones, which resulted in pathological changes in developing fetal tissue.  相似文献   

20.
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 14 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 58 from V. cinerea, and acetylenic thiophenes 911 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号