首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.  相似文献   

2.
3.
The angiogenic inducers cysteine-rich angiogenic protein 61 (Cyr61) and connective tissue growth factor (CTGF) are structurally related, extracellular matrix-associated heparin-binding proteins. Both can stimulate chemotaxis and promote proliferation in endothelial cells and fibroblasts in culture and induce neovascularization in vivo. Encoded by inducible immediate early genes, Cyr61 and CTGF are synthesized upon growth factor stimulation in cultured fibroblasts and during cutaneous wound healing in dermal fibroblasts. Recently, we have shown that adhesion of primary human fibroblasts to immobilized Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs) (Chen, N., Chen, C.-C., and Lau, L.F. (2000) J. Biol. Chem. 275, 24953-24961), providing the first demonstration of an absolute requirement for HSPGs in integrin-mediated cell attachment. We show in this study that CTGF also mediates fibroblast adhesion through the same mechanism and demonstrate that fibroblasts adhesion to immobilized Cyr61 or CTGF induces distinct adhesive signaling responses consistent with their biological activities. Compared with fibroblast adhesion to fibronectin, laminin, or type I collagen, cell adhesion to Cyr61 or CTGF induces 1) more extensive and prolonged formation of filopodia and lamellipodia, concomitant with formation of integrin alpha(6)beta(1)-containing focal complexes localized at leading edges of pseudopods; 2) activation of intracellular signaling molecules including focal adhesion kinase, paxillin, and Rac with similar rapid kinetics; 3) sustained activation of p42/p44 MAPKs lasting for at least 9 h; and 4) prolonged gene expression changes including up-regulation of MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) mRNAs and proteins sustained for at least 24 h. Together, these results establish Cyr61 and CTGF as bona fide adhesive substrates with specific signaling capabilities, provide a molecular basis for their activities in fibroblasts through integrin alpha(6)beta(1) and HSPG-mediated signaling during attachment and indicate that these proteins may function in matrix remodeling through the activation of metalloproteinases during angiogenesis and wound healing.  相似文献   

4.
5.
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.  相似文献   

6.
Y Chen  X Gou  X Ke  H Cui  Z Chen 《PloS one》2012,7(7):e40965
Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In this study, we made a three-dimensional (3D) tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs) in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM) of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I) secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.  相似文献   

7.
Cysteine-rich protein (Cyr61) and connective tissue growth factor (CTGF) are key immediate early growth factors with functions in cell proliferation, differentiation, and extracellular matrix synthesis. Studies were performed to assess the gene expression profile of Cyr61 and CTGF in rat urinary bladder during growth in response to partial outlet obstruction. The mRNA levels of Cyr61 as determined by ribonuclease protection assay increased sharply after 1 day and remained elevated throughout the time period of the obstruction. This correlates well with increased bladder weight. The CTGF mRNA levels seemed to peak within the second week of the urethral obstruction and correlate well with increased type I collagen mRNA. The expression pattern of either Cyr61 or CTGF proteins corroborated that of their respective mRNAs. Immunohistochemical analyses showed that immunoreactivity of Cyr61 was confined to detrusor smooth muscle and that of CTGF was detected within both detrusor muscle and lamina propria layers. These data strongly indicate the involvement of Cyr61 and CTGF in bladder wall remodeling as a result of the outlet obstruction.  相似文献   

8.
Cyr61 and connective tissue growth factor (CTGF), members of a newly identified family of extracellular matrix-associated signaling molecules, are found to mediate cell adhesion, promote cell migration and enhance growth factor-induced cell proliferation in vitro, and induce angiogenesis in vivo. We previously showed that vascular endothelial cell adhesion and migration to Cyr61 and Fisp12 (mouse CTGF) are mediated through integrin alpha(v)beta(3). Both Cyr61 and Fisp12/mCTGF are present in normal blood vessel walls, and it has been demonstrated that CTGF is overexpressed in advanced atherosclerotic lesions. In the present study, we examined whether Cyr61 and Fisp12/mCTGF could serve as substrates for platelet adhesion. Agonist (ADP, thrombin, or U46619)-stimulated but not resting platelets adhered to both Cyr61 and Fisp12/mCTGF, and this process was completely inhibited by prostaglandin I(2), which prevents platelet activation. The specificity of Cyr61- and Fisp12/mCTGF-mediated platelet adhesion was demonstrated by specific inhibition of this process with polyclonal anti-Cyr61 and anti-Fisp12/mCTGF antibodies, respectively. The adhesion of ADP-activated platelets to both proteins was divalent cation-dependent and was blocked by RGDS, HHLGGAKQAGDV, or echistatin, but not by RGES. Furthermore, this process was specifically inhibited by the monoclonal antibody AP-2 (anti-alpha(IIb)beta(3)), but not by LM609 (anti-alpha(v)beta(3)), indicating that the interaction is mediated through integrin alpha(IIb)beta(3). In a solid phase binding assay, activated alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to immobilized Cyr61 and Fisp12/mCTGF in a dose-dependent and RGD-inhibitable manner. In contrast, unactivated alpha(IIb)beta(3) failed to bind to either protein. Collectively, these findings identify Cyr61 and Fisp12/mCTGF as two novel activation-dependent adhesive ligands for the integrin alpha(IIb)beta(3) on human platelets, and implicate a functional role for these proteins in hemostasis and thrombosis.  相似文献   

9.
Integrin alpha x (ITGAX), a member of the integrin family, usually serves as a receptor of the extracellular matrix. Recently, accumulating evidence suggests that ITGAX may be involved in angiogenesis in dendritic cells. Herein, we report a direct role of ITGAX in angiogenesis during tumor development. Overexpression of ITGAX in human umbilical vein endothelial cells (HUVECs) enhanced their proliferation, migration, and tube formation and promoted xenograft ovarian tumor angiogenesis and growth. Further study showed that overexpression of ITGAX activated the PI3k/Akt pathway, leading to the enhanced expression of c-Myc, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor 2 (VEGFR2), whereas, the treatment of cells with PI3K inhibitor diminished these effects. Besides, c-Myc was observed to bind to the VEGF-A promoter. By Co-Immunoprecipitation (Co-IP) assay, we manifested the interaction between ITGAX and VEGFR2 or the phosphorylated VEGFR2. Immunostaining of human ovarian cancer specimens suggested that endothelial cells of micro–blood vessels displayed strong expression of VEGF-A, c-Myc, VEGFR2, and the PI3K signaling molecules. Also, overexpression of ITGAX in HUVECs could stimulate the spheroid formation of ovarian cancer cells. Our study uncovered that ITGAX stimulates angiogenesis through the PI3K/Akt signaling–mediated VEGFR2/VEGF-A overexpression during cancer development.  相似文献   

10.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

11.
Application of cyclic strain to bladder smooth muscle (SM) cells results in profound alterations of the histomorphometry, phenotype, and function of the cells. The onset of this process is characterized by the activation of a cascade of signaling events coupled to progressive and, perhaps, interdependent changes of gene expression. In particular, externally applied cyclic stretch to cultured bladder SM cells results in the transient expression of the Cyr61 gene that encodes a cysteine-rich heparin-binding protein originally described as a proangiogenic factor capable of altering the gene programs for angiogenesis, adhesion, and extracellular matrix synthesis. In this study, we investigated the effects of mechanical stretch-induced Cyr61 on the expression of potential mechanosensitive Cyr61 target genes and the signaling pathways involved. We showed that suppression of Cyr61 expression with an adenoviral vector encoding an antisense oligonucleotide reduced mechanical strain-induced VEGF, alpha(v)-integrin, and SM alpha-actin gene expression but had no effect on the myosin heavy chain isoforms SM-1 and SM-2. Signaling pathways involving RhoA GTPase, phosphatidyl inositol 3-kinase, and cytoskeletal actin dynamics altered stretch-induced Cyr61 and Cyr61 target genes. Reciprocally, adenovirus-mediated overexpression of Cyr61 in cells cultured under static conditions increased the expression of VEGF, alpha(v)-integrin, and SM alpha-actin, as well as that of SM-1 and SM-2 isoforms, suggesting that the effects of a sustained expression of Cyr61 extend to SM specific contractile function. These effects were dependent on integrity of the actin cytoskeleton. Together, these results indicate that Cyr61 is an important determinant of the genetic reprogramming that occurs in mechanically challenged cells.  相似文献   

12.
13.
Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins   总被引:1,自引:0,他引:1  
Cells in various anatomical locations are constantly exposed to mechanical forces from shear, tensile and compressional forces. These forces are significantly exaggerated in a number of pathological conditions arising from various etiologies e.g., hypertension, obstruction and hemodynamic overload. Increasingly persuasive evidence suggests that altered mechanical signals induce local production of soluble factors that interfere with the physiologic properties of tissues and compromise normal functioning of organ systems. Two immediate early gene-encoded members of the family of the Cyr61/CTGF/Nov proteins referred to as cysteine-rich protein 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2), are highly expressed in several mechanical stress-related pathologies, which result from either increased externally applied or internally generated forces by the actin cytoskeleton. Both Cyr61 and CTGF are structurally related but functionally distinct multimodular proteins that are expressed in many organs and tissues only during specific developmental or pathological events. In vitro assessment of their biological activities revealed that Cyr61 expression induces a genetic reprogramming of angiogenic, adhesive and structural proteins while CTGF promotes distinctively extracellular matrix accumulation (i.e., type I collagen) which is the principal hallmark of fibrotic diseases. At the molecular level, expression of the Cyr61 and CTGF genes is regulated by alteration of cytoskeletal actin dynamics orchestrated by various components of the signaling machinery, i.e., small Rho GTPases, mitogen-activated protein kinases, and actin binding proteins. This review discusses the mechanical regulation of the Cyr61 and CTGF in various tissues and cell culture models with a special attention to the cytoskeletally based mechanisms involved in such regulation.  相似文献   

14.
15.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

16.
CYR61 (CCN1) is an extracellular matrix-associated protein of the CCN family, which also includes CTGF (CCN2), NOV (CCN3), WISP-1 (CCN4), WISP-2 (CCN5), and WISP-3 (CCN6). Purified CYR61 induces neovascularization in corneal implants, and Cyr61-null mice suffer embryonic death due to vascular defects, thus establishing that CYR61 is an important regulator of angiogenesis. Aberrant expression of Cyr61 is associated with breast cancer, wound healing, and vascular diseases such as atherosclerosis and restenosis. In culture, CYR61 functions through integrin-mediated pathways to promote cell adhesion, migration, and proliferation. Here we show that CYR61 can also promote cell survival and tubule formation in human umbilical vein endothelial cells. Furthermore, we have dissected the integrin receptor requirements of CYR61 with respect to its pro-angiogenic activities. Thus, CYR61-induced cell adhesion and tubule formation occur through interaction with integrin alpha(6)beta(1) in early passage endothelial cells in which integrins have not been activated. By contrast, in endothelial cells in which integrins are activated by phorbol ester or vascular endothelial growth factor, CYR61-promoted cell adhesion, migration, survival, growth factor-induced mitogenesis, and endothelial tubule formation are all mediated through integrin alpha(v)beta(3). These findings indicate that CYR61 is an activation-dependent ligand of integrin alpha(v)beta(3) and an activation-independent ligand of integrin alpha(6)beta(1) and that these integrins differentially mediate the pro-angiogenic activities of CYR61. These findings help to define the mechanisms by which CYR61 acts as an angiogenic regulator, provide a molecular interpretation for the loss of vascular integrity and increased apoptosis of vascular cells in Cyr61-null mice, and underscore the importance of CYR61 in the development and homeostasis of the vascular system.  相似文献   

17.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

18.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) is an essential growth factor that regulates the processes necessary for cell proliferation, differentiation, and survival. The Igf1 gene encodes mature IGF-I and a carboxy-terminal extension called the E-peptide. In rodents, alternative splicing and post-translational processing produce two E-peptides (EA and EB). EB has been studied extensively and has been reported to promote cell proliferation and migration independently of IGF-I and its receptor (IGF-IR), but the mechanism by which EB causes these actions has not been identified. Further, the properties of EA have not been evaluated. Therefore, the goals of this study were to determine if EA and EB possessed similar activity and if these actions were IGF-IR independent. We utilized synthetic peptides for EA, EB, and a scrambled control to examine cellular responses. Both E-peptides increased MAPK signaling, which was blocked by pharmacologic IGF-IR inhibition. Although the E-peptides did not directly induce IGF-IR phosphorylation, the presence of either E-peptide increased IGF-IR activation by IGF-I, and this was achieved through enhanced cell surface bioavailability of the receptor. To determine if E-peptide biological actions required the IGF-IR, we took advantage of the murine C2C12 cell line as a platform to examine the key steps of skeletal muscle proliferation, migration and differentiation. EB increased myoblast proliferation and migration while EA delayed differentiation. The proliferation and migration effects were inhibited by MAPK or IGF-IR signaling blockade. Thus, in contrast to previous studies, we find that E-peptide signaling, mitogenic, and motogenic effects are dependent upon IGF-IR. We propose that the E-peptides have little independent activity, but instead affect growth via modulating IGF-I signaling, thereby increasing the complexity of IGF-I biological activity.  相似文献   

20.
Cysteine-rich 61 (CYR61), a member of the connective tissue factor CCN (Cyr61, CTGF, Nov) family, facilitates angiogenesis by interacting with integrins. Recent observations have indicated that CYR61 also rescues cells from anti-cancer drug-mediated apoptosis but the detailed mechanism underlying the role of CYR61 during apoptosis has not been identified. To better understand the role of CYR61 during cisplatin-induced apoptosis in tumor cells, we overexpressed or inhibited CYR61 expression in human cervical cancer cells (HeLa cells) and measured cisplatin-mediated apoptosis. The results from these experiments clearly demonstrate that CYR61 prevents cisplatin-induced apoptosis by inhibiting caspase-3 activity in HeLa cells. Therefore, CYR61 may be a useful therapeutic target for cisplatin-resistant tumors. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号