首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neutral exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B26 in skimmed milk was found to be composed of d-glucose and d-galactose in a molar ratio of 2:3. Linkage analysis and 1D/2D NMR ((1)H and (13)C) studies performed on the native polysaccharide, and on an oligosaccharide obtained from a partial acid hydrolysate of the native polysaccharide, showed the polysaccharide to consist of branched pentasaccharide repeating units with the following structure. [structure: see text]  相似文献   

2.
The lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus 291, when grown in skimmed milk, produced 80 mg/L exopolysaccharide with an average molecular mass of 1.4 x 10(3) kDa. Monosaccharide analysis, methylation analysis, MS, and 1D/2D NMR (1H and 13C) studies performed on the native polysaccharide, and on oligosaccharides obtained from a mild acid hydrolysate of the native polysaccharide, showed the polysaccharide to consist of branched pentasaccharide repeating units with the following structure: [structure: see text].  相似文献   

3.
The neutral exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B332 in skimmed milk was found to be composed of d-glucose, d-galactose, and l-rhamnose in a molar ratio of 1:2:2. Linkage analysis and 1D/2D NMR (1H and 13C) studies carried out on the native polysaccharide as well as on an oligosaccharide generated by a periodate oxidation protocol, showed the polysaccharide to consist of linear pentasaccharide repeating units with the following structure: -->3-alpha-D-Glcp-(1-->3)-alpha-D-Galp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->.  相似文献   

4.
A heteropolysaccharide (PS-I), isolated from the hot aqueous extract of an edible mushroom, Termitomyces striatus, is composed of d-glucose, d-galactose, d-mannose and l-fucose in a molar ratio 2:1:1:1. Structural investigation of the native as well as the Smith-degraded polysaccharide was carried out using methylation analysis, periodate oxidation studies and 1D and 2D NMR spectroscopy, and the repeating unit of the polysaccharide is established as follows: [carbohydrate structure: see text]  相似文献   

5.
Lactococcus lactis subsp. cremoris B39 grown on whey permeate produced an exopolysaccharide containing L-Rha, D-Gal and D-Glc in a molar ratio of 2:3:2. The polysaccharide was modified using an enzyme preparation from Aspergillus aculeatus, resulting in the release of Gal and a polymer with approximately the same hydrodynamic volume as the native polysaccharide. Linkage analysis and 1H NMR studies of both the native and modified exopolysaccharides elucidated that terminally linked Gal was released during modification and that the chemical structure of the branches within the repeating units is: beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->. 2D NMR experiments (both 1H-1H and 1H-13C) revealed that exopolysaccharide B39 consists of a branched heptasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

6.
During a study of serotyping of Cryptococcus neoformans, we found that the type strain of C. neoformans (CBS 132) was serotype A-D. This strain agglutinated with both factor 7 serum (specific for serotype A) and factor 8 serum (specific for serotype D) in our serotyping system. Therefore, we investigated the chemical structure of the antigenic capsular polysaccharide of this strain. The soluble capsular polysaccharide was obtained from the culture supernatant fluid by precipitation with ethanol. Column chromatography of the polysaccharide on DEAE-cellulose yielded three fractions (F-1 to F-3). The major antigenic activity was found in the F-3 fraction. The results obtained by methylation analysis, controlled Smith degradation-methylation analysis, partial acid hydrolysis, and other structural studies of F-3 polysaccharide indicated that the polysaccharide contains mannose, xylose, and glucuronic acid at a ratio of 7:2:2, and has a backbone of alpha (1-3)-linked D-mannopyranoside residues with a single branch of beta (1-2)-xylose and glucuronic acid. The ratio of mannose residues with or without a branch in the F-3 polysaccharide was 4:3 and its molecular weight calculated from the average of the degree of polymerization was 46,500 daltons. These results indicate that the chemical structure of the capsular polysaccharide of serotype A-D is very similar to those from serotypes A and D, suggesting that small differences in the molar ratio and pattern of linkage of monosaccharides in the branch of the polysaccharides of the three serotypes may be responsible for their different specificities.  相似文献   

7.
O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide (LPS) of Proteus penneri strain 31. Sugar and methylation analyses along with NMR spectroscopic studies, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C and 1H,31P HMQC experiments, demonstrated the following structure of the polysaccharide: [carbohydrate structure: see text] where FucNAc is 2-acetamido-2,6-dideoxygalactose and EtnP is 2-aminoethyl phosphate. The polysaccharide studied has the same carbohydrate backbone as the O-polysaccharide of Proteus vulgaris O19. Based on this finding and close serological relatedness of the LPS of the two strains, it is proposed to classify P. penneri 31 in Proteus serogroup O19 as an additional subgroup. In contrast, D-GlcNAc6PEtn and alpha-L-FucNAc-(1-->3)-D-GlcNAc shared with a number of other Proteus O-polysaccharides could not provide any significant cross-reactivity of the corresponding LPS with rabbit polyclonal O-antiserum against P. penneri 31.  相似文献   

8.
The structure of an acidic polysaccharide from Pseudoalteromonas atlantica strain 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac) has been elucidated. The polysaccharide was studied by 1H and 13C NMR spectroscopy, including 2D experiments, along with sugar and methylation analyses. After a selective hydrolysis a modified polysaccharide devoid of its side chain could be isolated. It was found that the polysaccharide has pentasaccharide repeating units with following structure: [structure: see text].  相似文献   

9.
The O-specific polysaccharide of Citrobacter gillenii PCM 1542 from serotype O-12a,12 b is composed of one residue each of D-glucose, D-GlcNAc, 2-deoxy-2-[(R)-3-hydroxybutyramido]-D-glucose (D-GlcNAcyl) and two GalNAc residues. On the basis of sugar and methylation analyses of the intact and Smith degraded polysaccharides, along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched pentasaccharide repeating unit of the O-specific polysaccharide was established:This structure differs significantly from that of the O-specific polysaccharide of C. gillenii PCM 1544 from the same serotype O-12a,12 b, which has been established earlier (Kübler-Kielz.shtsls;b, J. et al. Carbohydr. Res. 2001, 331, 331-336). Serological studies confirmed that the two O-antigens are not related and suggested that strains PCM 1542 and 1544 should be classified into different O-serogroups.  相似文献   

10.
The O-specific polysaccharide of the lipopolysaccharide of Citrobacter gillenii PCM 1540 (serogroup O11) consists of D-Glc, D-Man, D-GalNAc, D-GlcNAc, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and O-acetyl groups in the ratios 2:1:1:1:1:1. On the basis of sugar and methylation analyses and Smith-degradation along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched hexasaccharide repeating unit was established: [structure: see text]. Citrobacter werkmanii PCM 1541 belonging to the same serogroup O11 was found to have an R-form lipopolysaccharide devoid of the O-specific polysaccharide.  相似文献   

11.
An acidic polysaccharide was obtained from the lipopolysaccharide of Pseudoalteromonas distincta strain KMM 638, isolated from a marine sponge, and found to contain D-GlcA, D-GalNAc, 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc) and two unusual acidic amino sugars: 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) and 5-acetamido-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Fo, a derivative of pseudaminic acid). Oligosaccharides were derived from the polysaccharide by partial acid hydrolysis and mild alkaline degradation and characterised by electrospray ionisation (ESI) MS and 1H and 13C NMR spectroscopy. Based on these data and NMR spectroscopic studies of the initial and O-deacetylated polysaccharides, including quaternary carbon detection, 2D COSY, TOCSY, ROESY, H-detected 1H,13C HMQC and HMBC experiments, the following structure of the branched pentasaccharide repeating unit was established: [structure: see text].  相似文献   

12.
Lactococcus lactis subsp. cremoris B891 grown on whey permeate produced an exopolysaccharide containing D-Gal and D-Glc in a molar ratio of 2:3. The polysaccharide was partially O-acetylated. By means of HF solvolysis, O-deacetylation, enzymic modification, sugar linkage analysis and ID/2D NMR studies the exopolysaccharide was shown to be composed of repeating units with the following structure: [structure: see text].  相似文献   

13.
Wang Z  Liu X  Li J  Altman E 《Carbohydrate research》2008,343(3):483-488
The O-chain polysaccharide produced by a mild acid degradation of Aeromonas caviae ATCC 15468 lipopolysaccharide was found to be composed of L-rhamnose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and phosphoglycerol. Subsequent methylation and CE-ESIMS analyses and 1D/2D NMR ((1)H, (13)C and (31)P) spectroscopy showed that the O-chain polysaccharide is a high-molecular-mass acidic branched polymer of tetrasaccharide repeating units with a phosphoglycerol substituent having the following structure: [structure: see text] where Gro represents glycerol and P represents a phosphate group.  相似文献   

14.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

15.
Structure of a cell wall polysaccharide isolated from Hypocrea gelatinosa.   总被引:1,自引:0,他引:1  
The structure of a polysaccharide isolated from the cell wall of Hypocrea gelatinosa has been investigated by means of chemical analyses and 1D and 2D NMR spectroscopy. The polysacharide has an irregular structure, idealized as follows: [carbohydrate structure in text].  相似文献   

16.
The following structure of the O-specific polysaccharide of Citrobacter braakii O7a,3b,1c was established using sugar and methylation analyses and NMR spectroscopy, including 2D COSY, TOCSY, NOESY, and 1H, 13C heteronuclear single-quantum coherence (HSQC) experiments: (struture: see text). The main D-mannan chain of the polysaccharide studied has the same structure as the O-specific polysaccharide of Escherichia coli O9, Klebsiella pneumoniae O3, and Hafnia alvei PCM 1223.  相似文献   

17.
The structure of the antigenic O-chain polysaccharide of Flavobacterium columnare ATCC 43622, a Gram-negative bacterium that causes columnaris disease in warm water fish, was determined by high-field 1D and 2D NMR techniques, MS, and chemical analyses. The O-chain was shown to be an unbranched linear polymer of a trisaccharide repeating unit composed of 2-acetamido-2-deoxy-d-glucuronic acid (d-GlcNAcA), 2-acetamidino-2,6-dideoxy-l-galactose (l-FucNAm) and 2-acetamido-2,6-dideoxy-d-xylo-hexos-4-ulose (d-Sug) (1 : 1 : 1), having the structure: [structure: see text].  相似文献   

18.
Streptococcus thermophilus EU20 when grown on skimmed milk secretes a high-molecular-weight exopolysaccharide that is composed of glucose, galactose and rhamnose in a molar ratio of 2:3:2. Using chemical techniques and 1D and 2D-NMR spectroscopy (1H and 13C) the polysaccharide has been shown to possess a heptasaccharide repeating unit having the following structure: [chemical structure: see text]. Treatment of the polysaccharide with mild acid (0.5 M TFA, 100 degrees C for 1 h) liberates two oligosaccharides; the components correspond to the repeating unit and a hexasaccharide equivalent to the repeating unit minus the terminal alpha-L-Rhap.  相似文献   

19.
The exopolysaccharide produced by Streptococcus thermophilus 8S in reconstituted skimmed milk is a heteropolysaccharide containing d-galactose, d-glucose, d-ribose, and N-acetyl-d-galactosamine in a molar ratio of 2 : 1 : 1 : 1. Furthermore, the polysaccharide contains one equivalent of a novel open chain nononic acid constituent, 3,9-dideoxy-d-threo-d-altro-nononic acid, ether-linked via C-2 to C-6 of an additional d-glucose per repeating unit. Methylation analysis and 1D/2D NMR studies (1H and 13C) performed on the native polysaccharide, and mass spectrometric and NMR analyses of the oligosaccharide obtained from the polysaccharide by de-N-acetylation followed by deamination and reduction demonstrated the 'hepta'saccharide repeating unit to be: -->4)-alpha-D-Galp-(1-->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1--7')-Sub-(1-->4)-beta-D-GalpNAc-(1--> in which Sug is 6-O-(3',9'-dideoxy-d-threo-d-altro-nononic acid-2'-yl)-alpha-d-glucopyranose.  相似文献   

20.
A polysaccharide with a molecular weight of 1.26 x 10(5), obtained from the sporoderm-broken spores of Ganoderma lucidum, was purified by anion-exchange and gel-permeation chromatography. This polysaccharide had a strong effect on suppressing the antibody production and the Con A or LPS induced lymphocyte proliferation in mice. Chemically, the structure of the polysaccharide was identified by methylation analysis, 1 D, 2 D NMR and ESI-MS spectroscopic studies of the native one and of the oligosaccharide fragments generated by partial acid hydrolysis, Smith degradation, and acetolysis. It was concluded that the intact polysaccharide was a complex beta-D-glucan consisting of a (1-->6)-linked backbone chain, in which every other glucosyl residue was substituted at C-3 or C-4 with mono-, di- and trisaccharide branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号