首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochemical techniques were used for the light and electron microscopical localization of alkaline phosphatase and potassium-dependent nitrophenyl phosphatase in the epidermal ionocytes of the Teleost Blennius sanguinolentus. The heavier deposition of the reaction products obtained with the different media was shown in the cytoplasmic surface of the labyrinth tubules, the apical vesicles and in intimate association with plasmic membranes. Both plasma membranes and intracellular activities are affected by the addition of specific inhibitors L-p-bromotetramisole oxalate and ouabain) to both complete and control media. The significance of the cytoplasmic localization of both the two enzymes is discussed with reference to current models of transepithelial ion transportation.  相似文献   

2.
Summary The indoxyl—tetranitro BT method for the demonstration of alkaline phosphatase activity has been optimized and its validity for quantitative histochemistry tested. The study has been performed with model films of polyacrylamide gel incorporating homogenate of rat liver and with cryostat sections from the same livers. Addition of polyvinyl alcohol to the incubation medium greatly improved the localization of the final reaction product in cryostat sections. In polyacrylamide films, the formazan production specifically due to alkaline phosphatase was highest when using a medium containing 100mm Tris-HCl buffer, pH 9.0, 0.2–1.0mm substrate, 0.32mm 1-methoxyphenazine methosulphate, 10mm MgCl2, 5mm sodium azide and 1mm tetranitro BT. For the incubation of cryostat sections in the presence of polyvinyl alcohol, the same medium could be used but the optimum concentrations of substrate and tetranitro BT appeared to be 1–2mm and 5mm respectively. The test minus control reaction was specific for alkaline phosphatase activity and could be inhibited completely with tetramisole. The test minus control reaction was linear with time up to 30 min with model films and up to 15 min with cryostat sections. The formazan production was also linear with the amount of homogenate incorporated in model films and with section thickness up to 18 µm and therefore, the reaction obeyed the Beer—Lambert law. Variation of the substrate concentration yielded aK M of 0.05mm for aqueous media and aK M of 0.55mm for polyvinyl alcohol-containing media. The inhibition with tetramisole appeared to be competitive withK i = 0.07mm for aqueous media andK i = 0.7mm for polyvinyl alcohol-containing media. These values indicate that the indoxyl—tetranitro BT method is considerably more sensitive than any metal salt or diazonium salt method developed so far. It is concluded that the optimized method described here is a specific, sensitive and valid quantitative histochemical method for the demonstration of alkaline phosphatase activity.  相似文献   

3.
Summary Treatment of red cell membranes with pure phospholipase C inactivates (Na++K+)-ATPase activity and Na+-dependent phosphorylation but increases K+-dependent phosphatase activity. When phospholipase A2 replaces phospholipase C, all activities are lost. Activation of K+-dependent phosphatase by treatment with phospholipase C is caused by an increase in the maximum rate of hydrolysis ofp-nitrophenylphosphate and in the maximum activating effect of K+, the apparent affinities for substrate and cofactors being little affected. After phospholipase C treatment K+-dependent phosphatase is no longer sensitive to ouabain but becomes more sensitive to N-ethylmaleimide. In treated membranes Na+ partially replaces K+ as an activator of the phosphatase. Although ATP still inhibits phosphatase activity, neither ATP nor ATP+Na+ are able to modify the apparent affinity for K+ of K+-dependent phosphatase in these membranes.  相似文献   

4.
Summary The cytochemical study of acid phosphatase in spermatic cells of Ceratitis capitata defines the enzimatically active sites, relating this enzyme with morphological modifications of the cell components during spermiogenesis. In the axoneme, acid phosphatase is associated with the metabolism of phosphates which promote flagellar motility. The enzymatic activity verified on the cytoplasmic membranes demonstrates the importance of this enzyme in the process of cellular differentiation.  相似文献   

5.
A method was developed for isolating plasma membranes from Ehrlich ascites tumor cells. The plasma membranes appeared as highly irregular shrunken sacs or ghosts. Enzymatic characterization of the plasma membranes showed them to be high in (Na+ + K+-ATPase activity and K+-stimulated phosphatase activity. A detailed study showed that both of these latter enzymic functions were stimulated by various amino acids. Such stimulation occurred in the 1–15 mM range of amino acids and was most effective for aromatic species, e.g. phenylalanine and histidine. The amino acid stimulation, which appeared to show little or no stereospecificity, was eliminated by a one carbon separation of NH2 and COOH groups. Since the metal chelating agent EDTA was also effective in mimicking the stimulation by amino acids, and since a mild washing procedure did not render membranes insensitive to subsequent amino acid or EDTA stimulation, it is proposed that the operation of the (Na+ + K+)-ATPase (and K+-stimulated phosphatase) is to some extent controlled by a tightly bound metal. The possible physiological function of an amino acid-regulated transport ATPase is discussed.  相似文献   

6.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

7.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

8.
P. -J. Gärtner  W. Nagl 《Planta》1980,149(4):341-349
Autolysis of the suspensor, an embryonal haustorium, starts in the basal cells and proceeds in the direction of the embryo. InPhaseolus vulgaris, acid phosphatase activity is first found in transforming plastids, similar to the acid phosphatase activity inPh. coccineus [Nagl (1977) Z. Pflanzenphysiol.85, 45–51], although the ultrastructural details are different. InTropaeolum majus, autolysis begins in the most distal part of the suspensor, i.e., the chalazal or carpel haustorium. First the endoplasmic reticulum shows acid phosphatase activity, but neither the mitochondria, which undergo transformation similar to that observed in plastids ofPhaseolus, nor the leucoplasts show such activity. Later, however, the plastids exhibit low activity. Contrarily, the plastids in the suspensor cells adjacent to the embryo show increasing activity during senescence of the suspensor. During final autolysis, activity is found in all cytoplasmic membranes, while it is reduced in plastids. The visible ultrastructural transformations of various organelles into cytolysomes does not necessarily coincide with acid phosphatase activity. Our findings are a further indication of the high diversification and specialization of plastids during plant embryogenesis.  相似文献   

9.
The ultrastructural localization of alkaline phosphatase and K+-NPPase was investigated in brain capillaries of newt by a cytochemical study using whole brain perfusion. The alkaline phosphatase activity was present in both luminal and antiluminal membranes of the endothelial cells. By contrast, the K+-NPPase was located only in antiluminal membranes of the brain capillaries. This distinct enzymatic distribution suggested that the luminal and antiluminal membranes are functionally different. The role of alkaline phosphatase and K+-NPPase in the blood brain barrier is discussed.  相似文献   

10.
Summary Electron-cytochemical localization of alkaline phosphatase activity was performed on G cells of Necturus maculosus antral mucosa. Alkaline phosphatase activity was localized to the nuclear membrane, the Golgi/endoplasmic reticulum, and the limiting membranes of G cell peptide-secretion vesicles. There was no specific localization of alkaline phosphatase activity to the plasma membrane. Treatment of the tissues with levamisole (an alkaline phosphatase inhibitor) did not markedly reduce the specific alkaline phosphatase activity. Specific lead deposition was reduced by removal of the substrate from the reaction mixture. The results from this study on N. maculosus G cells demonstrate that alkaline phosphatase activity can be found in a non-mammalian gastric endocrine cell and that specific activity was localized primarily to those intracellular structures involved with protein biosynthesis.  相似文献   

11.
Summary A levamisole analogue, the l-p-bromotetramisole is introduced as a potent inhibitor of non-specific alkaline phosphatase.Complete inhibition is achieved cytochemically at a concentration of 0.1 mM in various rat tissues except the intestine, which is not affected. The d-p-bromotetramisole does not influence the alkaline phosphatase activities.Since no effect of the inhibitor is seen on the activities of specific phosphatases, this drug is recommended also as an additive for specific phosphatase media in order to yield the specific activity only.  相似文献   

12.
The influence of Ca homoionic clay minerals (montmorillonite, illite, and kaolinite) on the activity,K m , andV m values of acid phosphatase was examined in model experiments. At each substrate (p-nitrophenyl phosphate) level tested, the addition of increasing amounts of clays (50, 100, and 150 mg, respectively) decreased the activity and increased theK m value from 1.43×10–3 m PNP (in the soluble state) to 82.3×10–3M (montmorillonite), 8.02×10–3 m (kaolinite), and 7.65×10–3 m (illite) at the 150 mg level. The maximum enzyme reaction velocity (V m ) remained nearly constant at different amounts of kaolinite and illite, but increased remarkably with rising quantities of montmorillonite. Apparently, the substrate affinity of sorbed acid phosphatase is significantly lower with montmorillonite than with kaolinite or illite. This may be ascribed to an intensive sorption of both substrate and enzyme to the surface as well as to interlattice sites of montmorillonite.  相似文献   

13.
Summary The ultracytochemical localization of X-prolyldipeptidyl (amino)peptidase (DPP) activity was studied in a late exponential culture of a haploid () wild-type strain of Saccharomyces cerevisiae and its pep4-3 mutant. Yeast cells were fixed for 20 min in cold 1% glutaraldehyde buffered with 50 mM TES buffer to pH 7.0 and then incubated for 80 min with 1.2 mM l-alanyl-l-proline-4-methoxy-2-naphthylamide (Ala-Pro-MNA) or Lys-Pro-MNA as cytochemical substrates plus 0.06% hexazonium p-rosaniline (HPR) buffered with 160 mM cacodylate to pH 7.0. The osmiophilic azoindoxyl complex was formed by coupling HPR with MNA liberated by DPP activity and was then osmicated during an overnight post-fixation of cells in cold 1% OsO4. In the wild-type strain, conspicuous deposits of DPP reaction product were observed in vacuolar membranes. When compared with the parent strain, the pep4-3 mutant cells were enriched in endoplasmic reticulum (ER), cytoplasmic lipoprotein, and microcompartments: membranous vesicles and microglobules. In the mutant, DPP reaction product was found in about 50% of non-vacuolated cells at the following sites: the nuclear envelope, polar layers of ER sheets and of membranous vesicles (diameter, 40–90 nm), the surface or the lumen of these vesicles, the cytoplasmic membrane (under some bud scars) and the periplasmic space. The largest amount of reaction product was found in microglobules (diameter, 20–50 nm) that were mainly observed in the cytoplasmic matrix but were also present in nuclei (nucleoli) and mitochondria. These microglobules had a single-line boundary and appeared to be composed of lipoprotein. The surface ultrastructure of sectioned microglobules in the cytoplasmic matrix was similar to that of the coated vesicles found in mammalian cells. Only sparse amounts of DPP reaction product were seen in budding yeast. In all pep4-3 cells with electron-lucent vacuoles, the reaction product was confined to the vacuolar membranes (i.e. homologous to the ER), microglobules and the periplasmic space. Polysaccharides with free vic-groups were shown by the cytochemical reaction to be present on the surface of ER membranes, in microglobules, in the periplasmic space and in the cell wall. Our cytochemical results indicate that microglobules participate in the exocytosis of both DPP and glycoproteins, and reveal new features of vacuolar morphogenesis in yeast.Abbreviations used DPP X-prolyl-dipeptidyl (amino)peptidase - ER endoplasmic reticulum - HPR hexazonium p-rosaniline - MNA 4-methoxy-2-nyphthylamide - pNA p-nitroanilide - TES N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid  相似文献   

14.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   

15.
Summary The effect of energy deprivation on autophagocytosis in Ehrlich ascites tumor cells was studied using cytochemical techniques. Autophagocytosis was induced with vinblastine incubation (0.1 mM) and the cellular ATP-level was lowered with 2-deoxy-d-glucose (0.35 mM). Acid phosphatase was used as a marker for lysosomal enzymes and imidazole-buffered osmium tetroxide impregnation in order to study the effects of energy deprivation on the maturation of autophagic vacuole (AV) membranes.Control and vinblastine treated cells maintained their ATP-levels throughout the incubation period tested (120 min). 2-Deoxy-d-glucose alone and with vinblastine decreased the intracellular ATP-level significantly after only 3 min incubation. Most of the AV's in control and vinblastine treated cells contained degraded material and acid phosphatase activity. Their membranes were stained only slightly or not at all with imidazole-buffered osmium tetroxide. 2-Deoxy-d-glucose alone as well as with vinblastine induced in particular an accumulation of early stages of AV's. These vacuoles contained undegraded cytoplasmic material and no acid phosphatase activity and their membranes were stained usually partly with imidazole-buffered osmium tetroxide. The membranes of some early AV's resembled endoplasmic reticulum and still had attached ribosomes.It was concluded that the inhibition of cellular energy production used in the present study did not inhibit autophagic sequestration but retarded the maturation of AV membranes and impaired the functioning of lysosomal hydrolases.  相似文献   

16.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

17.
Summary Four types of nonvoltage-activated potassium channels in the body-wall muscles ofDrosophila third instar larvae have been identified by the patch-clamp technique. Using the inside-out configuration, tetraethylammonium (TEA). Ba2+, and quinidine were applied to the cytoplasmic face of muscle membranes during steady-state channel activation. The four channels could be readily distinguished on the basis of their pharmacological sensitivities and physiological properties. The KST channel was the only type that was activated by stretch. It had a high unitary conductance (100 pS in symmetrical 130/130mm KCl solution), was blocked by TEA (K d 35mm), and was the most sensitive to Ba2+ (complete block at 10–4 m). A Ca2+-activated potassium channel. KCF 72pS (130/130mm KCl), was gated open at>10–8 m Ca2+, was the least sensitive to Ba2+ (K d of 3mm) and TEA (K d of 100mm), and was not affected by quinidine. K2 was a small conductance channel of 11 pS (130/2 KCl, pipette/bath), and was very sensitive to quinidine, being substantially blocked at 0.1mm. It also exhibited a half block at 0.3mm Ba2+ and 25mm TEA. A fourth channel type, K3, was the most sensitive to TEA (half block<1mm). It displayed a partial block to Ba2+ at 10mm, but no block by 0.1mm quinidine. The blocking effects of TEA, Ba2+ and quinidine were reversible in all channels studied. The actions of TEA and Ba2+ appeared qualitatively different: in all four channels. TEA reduced the apparent unitary conductance, whereas Ba2+ decreased channel open probability.  相似文献   

18.
Summary The localization of rat intestinal alkaline phosphatase has been studied in relation to fat absorption. The observations support a theory of conversion, within the intestinal mucosa, of intestinal type to liver type alkaline phosphatase when the criterion of differential sensitivity to two amino acid inhibitors, l-phenylalanine, and l-homoarginine, is applied.Following a three hour in vivo exposure to mixtures of oleic acid, sodium taurocholate, and lauric acid, the epithelium becomes depleted of its l-phenylalanine-sensitive, intestinal type alkaline phosphatase. At the same time, enriched activity is seen in the lamina propria; this activity is both particulate and diffuse, and is present both in the connective tissue matrix and in cells, including macrophages, eosinophils and lymphocytes. Most of this enzyme is inhibited by l-homoarginine, a property characteristic of liver type alkaline phosphatase.The localization of enzyme-positive particles 0.5 to 1.0 in diameter in both epithelium and lamina propria appears identical to that of particulate fat. A physical association between transport of absorbed fat and metabolic conversion of intestinal type alkaline phosphatase is postulated.This work was aided in part by grants-in-aid [CA-3332-01, K6-CA-18,453] from the National Cancer Institute, National Institutes of Health, U.S.P.H.S. and the John A. Hartford Foundation, Inc.Pre-doctoral trainee, U.S.P.H.S. grant GM01451.Holder of a Juan Marsh Foundation Fellowship, Lemuel Shattuck Hospital.  相似文献   

19.
Summary Progesterone initiates the resumption of the meiotic divisions in the amphibian oocyte. Depolarization of theRana pipiens oocyte plasma membrane begins 6–10 hr after exposure to progesterone (1–2 hr before nuclear breakdown). The oocyte cytoplasm becomes essentially isopotential with the medium by the end of the first meiotic division (20–22 hr). Voltage-clamp studies indicate that the depolarization coincides with the disappearance of an electrogenic Na+, K+-pump, and other electrophysiological studies indicate a decrease in both K+ and Cl conductances of the oocyte plasma membrane. Measurement of [3H]-ouabain binding to the plasma-vitelline membrane complex indicates that there are high-affinity (K d-4.2×10–8 m), K+-sensitive ouabain-binding sites on the unstimulated (prophase-arrest) oocyte and that ouabain binding virtually disappears during membrane depolarization. [3H]-Leucine incorporation into the plasma-vitelline membrane complex increased ninefold during depolarization with no significant change in uptake or incorporation into cytoplasmic proteins or acid soluble pool(s). This together with previous findings suggests that progesterone acts at a translational level to produce a cytoplasmic factor(s) that down-regulates the membrane Na+, K+-ATPase and alters the ion permeability and transport properties of both nuclear and plasma membranes.  相似文献   

20.
I. D. Bowen 《Protoplasma》1970,70(2):247-260
Summary Acid phosphatase, generally thought of as a lysosomal enzyme and indeed widely employed as a lysosomal marker, has been found associated with the Golgi complex of all cell types from the crop, intestine and digestive gland ofArion ater. Reaction product was also detected within the multivesicular bodies and cytoplasm of columnar cells from the crop and the multivesicular bodies of mucous cells from the intestine. A vacuolar localization was obtained in the digestive cells of the intestine and digestive gland. Secretory protein granules in the calcium cells of the same gland and apical vacuoles in the so-called thin cells also showed a positive reaction.This work was undertaken as part of a slug research project under the direction and co-ordination of Dr. D. K.Roach, supported by A.R.C. Assistance was given by Mr. T. R.Mainwaring in the preparation of tissue for electron microscopy.I would like to thank Professor J.Brough and Professor D.Bellamy for providing facilities and encouragement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号