首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Par-4 inducible apoptosis in prostate cancer cells   总被引:4,自引:0,他引:4  
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.  相似文献   

2.
3.
Zinc concentrations in the prostate are uniquely high but are dramatically decreased with prostate cancer. Studies have suggested that increasing zinc in the prostate may be a potential therapeutic strategy. The goal of this study was to evaluate the antiproliferative effects of zinc in prostate cancer cells (PC-3) and noncancerous benign prostate hyperplasia (BPH) cells (BPH-1) and to define possible mechanisms. PC-3 and BPH-1 cells were treated with zinc (0–250 μM) for 24 and 48 h, and cell growth and viability were examined. Apoptosis was assessed by phosphatidylserine externalization, caspase activation and protein expression of B-cell CLL/lymphoma 2 (Bcl-2)-associated X protein (BAX):Bcl-2. BPH-1 cells were more sensitive to the antiproliferative effects of zinc compared to PC-3. The response to zinc in PC-3 and BPH-1 cells differed as evidenced by opposing effects on Bcl-2:BAX expression. Additionally, different effects on the nuclear expression and activity of the p65 subunit of nuclear factor kappa B were observed in response to zinc between the two cell types. The differential response to zinc in PC-3 and BPH-1 cells suggests that zinc may serve an important role in regulating cell growth and apoptosis in prostate cancer and hyperplasia cells.  相似文献   

4.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

5.
Prostate cancer is the second most common cause of death related to cancer in Western society. 2-Methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17beta, inhibits tumor angiogenesis while also exerting potent cytotoxic effects on various cancer cells. 2-ME has been shown to activate the p38 MAPK and JNK pathways and to induce apoptosis in cells, although the underlying molecular mechanisms for this are unknown. Here we report that the expression of Smad7, an adaptor molecule required to activate p38 MAPK in the transforming growth factor beta signaling pathway, is also required for 2-ME-induced p38 activation and apoptosis in human prostate cancer cells (PC-3U). PC-3U/AS-S7 cells stably transfected with an antisense Smad7 construct, or PC-3U cells transiently transfected with short interfering RNA for Smad7, were protected against 2-ME-induced apoptosis. 2-ME-induced apoptosis was found to involve p38 MAPK and JNK, because simultaneous treatments with 2-ME and a specific p38 inhibitor (SB203580) or an inhibitor of JNK (L-JNK1) prevented 2-ME-induced apoptosis. Most interestingly, Smad7 was shown by both antisense and short interfering RNA techniques to affect levels of beta-catenin, which has been implicated previously in the regulation of apoptosis. Moreover, Smad7 was found to be important for the basal expression of Bim, a pro-apoptotic Bcl-2 family member, and for 2-ME-induced expression of Bim. These results suggest that expression of Smad7 is crucial for 2-ME-induced apoptosis in human prostate cancer cells.  相似文献   

6.
Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-kappaB was up-regulated. Interference analysis of NF-kappaB in A549 cells showed that knock down of NF-kappaB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-kappaB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.  相似文献   

7.
Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells   总被引:11,自引:0,他引:11  
Bu S  Blaukat A  Fu X  Heldin NE  Landström M 《FEBS letters》2002,531(2):141-151
Prostate and breast carcinomas are sex hormone-related carcinomas, which are known to be associated with an over-expression of the proto-oncogene Bcl-2. Here, we report that 2-methoxyestradiol (2-ME), an endogenous metabolite of estrogen that does not bind to nuclear estrogen receptors, effectively induces apoptosis in Bcl-2-expressing human prostate and breast carcinoma cells in vitro and in a rat prostate tumor model in vivo. In several cell lines derived from prostate, breast, liver and colorectal carcinomas, 2-ME treatment led to an activation of c-Jun N-terminal kinase (JNK) and phosphorylation of Bcl-2, which preceded the induction of apoptosis. In summary, our data suggest that 2-ME induces apoptosis in epithelial carcinomas by causing phosphorylation of JNK, which appears to be correlated with phosphorylation of Bcl-2.  相似文献   

8.
Bone morphogenetic proteins (BMP) have been implicated in the development of bone metastases in prostate cancer. In this study, we investigated the role which BMP-9 played in prostate cancer and found that the expression of BMP-9 was decreased or absent in prostate cancer, particularly in the foci of higher grade disease. We further investigated the influence of BMP-9 on the biological behaviors of prostate cancer cells. The forced overexpression of BMP-9 prevented the in vitro growth, cell-matrix adhesion, invasion, and migration of prostate cancer cells. We also elucidated that BMP-9 induced apoptosis in PC-3 cells through the up-regulation of prostate apoptosis response-4. Among the receptors which have been implicated in the signaling of BMP-9, BMPR-IB and BMPR-II have also been implicated in the development and progression of prostate cancer. Knockdown of BMPR-IB or BMPR-II using respective hammerhead ribozyme transgenes could promote cell growth in vitro. We also found that BMPR-II is indispensable for the Smad-dependent signal transduction by BMP-9 in PC-3 cells, in which Smad-1 was phosphorylated and translocated from the cytoplasm into the nuclei. Taken together, BMP-9 inhibits the growth of prostate cancer cells due to the induced apoptosis, which is related to an up-regulation of prostate apoptosis response-4 through a Smad-dependent pathway. BMP-9 could also prevent the migration and invasiveness of prostate cancer. This suggests that BMP-9 may function as a tumor suppressor and apoptosis regulator in prostate cancer.  相似文献   

9.
Pristimerin is a natural product derived from the Celastraceae and Hippocrateaceae families that were used as folk medicines for anti inflammation in ancient times. Although it has been shown that pristimerin induces apoptosis in breast cancer cells, the involved mechanism of action is unknown. The purpose of the current study is to investigate the primary target of pristimerin in human cancer cells, using prostate cancer cells as a working model. Nucleophilic susceptibility and in silico docking studies show that C6 of pristimerin is highly susceptible towards a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit. Consistently, pristimerin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50 2.2 micromol/L) and human prostate cancer 26S proteasome (IC50 3.0 micromol/L). The accumulation of ubiquitinated proteins and three proteasome target proteins, Bax, p27 and I kappa B-alpha, in androgen receptor (AR)-negative PC-3 prostate cancer cells supports the conclusion that proteasome inhibition by pristimerin is physiologically functional. This observed proteasome inhibition subsequently led to the induction of apoptotic cell death in a dose- and kinetic-dependent manner. Furthermore, in AR-positive, androgen-dependent LNCaP and AR-positive, androgen-independent C4-2B prostate cancer cells, proteasome inhibition by pristimerin results in suppression of AR protein prior to apoptosis. Our data demonstrate, for the first time, that the proteasome is a primary target of pristimerin in prostate cancer cells and inhibition of the proteasomal chymotrypsin-like activity by pristimerin is responsible for its cancer cell death-inducing property.  相似文献   

10.
Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. PKCdelta, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of PKCdelta totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical PKCalpha promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to PKCepsilon, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. PKCdelta stimulates the release of TNFalpha from the plasma membrane, and blockade of TNFalpha secretion or TNFalpha receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.  相似文献   

11.
Isoliquiritigenin (ISL), a simple chalcone derivative, 4,2',4'-trihydroxychalcone, found in licorice, shallot and bean sprouts, has been reported to have chemoprotective effects. To examine the effects of ISL on the growth of prostate cancer cells, we cultured MAT-LyLu (MLL) rat and DU145 human prostate cancer cells with various concentrations (0-20 micromol/L) of ISL. Treatment of the cells with increasing concentrations of ISL led to dose-dependent decreases in the viable cell numbers in both DU145 and MLL cells (P<.05). Hoechst 33258 dye staining of condensed nuclei and annexin V binding to surface phosphatidylserine revealed increased numbers of apoptotic cells after ISL treatment. Western blot analysis revealed that ISL increased the levels of membrane-bound Fas ligand (FasL), Fas, cleaved casapse-8, truncated Bid (tBid), Bax and Bad in DU145 cells (P<.05). Isoliquiritigenin increased the percentage of cells with depolarized mitochondrial membranes, in a concentration-dependent manner (P<.05). Isoliquiritigenin induced the release of cytochrome c and Smac/Diablo from the mitochondria into the cytoplasm (P<.05). Isoliquiritigenin dose-dependently increased the levels of cleaved caspase-9, caspase-7, caspase-3 and poly(ADP-ribose) polymerase (P<.05). The present results indicate that ISL inhibits prostate cancer cell growth by the induction of apoptosis, which is mediated through mitochondrial events, which are associated with an evident disruption of the mitochondrial membrane potential, and the release of cytochrome c and Smac/Diablo, and the activation of caspase-9.  相似文献   

12.
Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.  相似文献   

13.
RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis   总被引:8,自引:0,他引:8  
Cancer cells are more susceptible to chemotherapeutic agent-induced apoptosis than their normal counterparts. Although it has been demonstrated that the increased sensitivity results from deregulation of oncoproteins during cancer development (Evan, G. I., and Vousden, K. H. (2001) Nature 411, 342-348; Green, D. R., and Evan, G. I. (2002) Cancer Cell 1, 19-30), little is known about the signaling pathways leading to changes in the apoptotic threshold in cancer cells. Here we show that low RKIP expression levels in tumorigenic human prostate and breast cancer cells are rapidly induced upon chemotherapeutic drug treatment, sensitizing the cells to apoptosis. We show that the maximal RKIP expression correlates perfectly with the onset of apoptosis. In cancer cells resistant to DNA-damaging agents, treatment with the drugs does not up-regulate RKIP expression. However, ectopic expression of RKIP resensitizes DNA-damaging agent-resistant cells to undergo apoptosis. This sensitization can be reversed by up-regulation of survival pathways. Down-regulation of endogenous RKIP by expression of antisense and small interfering RNA (siRNA) confers resistance on sensitive cancer cells to anticancer drug-induced apoptosis. Our studies suggest that RKIP may represent a novel effector of signal transduction pathways leading to apoptosis and a prognostic marker of the pathogenesis of human cancer cells and tumors after treatment with clinically relevant chemotherapeutic drugs.  相似文献   

14.
Apoptosis inhibition rather than enhanced cellular proliferation occurs in prostate cancer (CaP), the most commonly diagnosed malignancy in American men. Therefore, it is important to characterize residual apoptotic pathways in CaP cells. When intracellular Ca(2+) stores are released and plasma membrane "store-operated" Ca(2+) entry channels subsequently open, cytosolic [Ca(2+)] increases and is thought to induce apoptosis. However, cells incapable of releasing Ca(2+) stores are resistant to apoptotic stimuli, indicating that Ca(2+) store release is also important. We investigated whether release of intracellular Ca(2+) stores is sufficient to induce apoptosis of the CaP cell line LNCaP. We developed a method to release stored Ca(2+) without elevating cytosolic [Ca(2+)]; this stimulus induced LNCaP cell apoptosis. We compared the apoptotic pathways activated by intracellular Ca(2+) store release with the dual insults of store release and cytosolic [Ca(2+)] elevation. Earlier processing of caspases-3 and -7 occurred when intracellular store release was the sole Ca(2+) perturbation. Apoptosis was attenuated in both conditions in stable transfected cells expressing antiapoptotic proteins Bclx(L) and catalytically inactive caspase-9, and in both scenarios inactive caspase-9 became complexed with caspase-7. Thus, intracellular Ca(2+) store release initiates an apoptotic pathway similar to that elicited by the dual stimuli of cytosolic [Ca(2+)] elevation and intracellular store release.  相似文献   

15.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   

16.
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.  相似文献   

17.
Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS enhanced the expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function.  相似文献   

18.
Periostin is frequently upregulated in human cancers including gastric cancer and implicated in cancer cell proliferation, invasion, and epithelial–mesenchymal transition. This study was undertaken to investigate the effects of periostin overexpression on the chemosensitivity of gastric cancer cells. We constructed a stable cell line overexpressing periostin in SGC-7901 human gastric cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that periostin had no influence on the proliferation of SGC-7901 cells. Compared to empty vector-transfected cells, overexpression of periostin rendered SGC-7901 cells more resistant to cisplatin or 5-fluorouracil (5-FU)-induced apoptosis, accompanying with less release of cytochrome c from mitochondria and diminished cleavage of caspase-3 and poly (ADP-ribose) polymerase. Periostin-overexpressing cells treated with cisplatin or 5-FU showed significantly (p < 0.05) decreased expression of Bax and p53 proteins and increased expression of Bcl-2 protein, when compared to drug-treated mock counterparts. Restoration of p53 expression by delivering wild-type p53 gene resulted in a marked increase in drug-induced apoptosis in periostin-overexpressing SGC-7901 cells. Periostin overexpression elevated the phosphorylation of Akt. Pretreatment of periostin-overexpressing cells with an Akt inhibitor, MK-2206, partially rescued periostin-mediated inhibition of p53 expression and drug resistance. Taken together, our data indicate that periostin confers protection against cisplatin or 5-FU-induced apoptosis in SGC-7901 cells, likely through modulating the Akt/p53 pathway, and thus represents a potential therapeutic target in gastric cancer.  相似文献   

19.
The sphingomyelin metabolites ceramide and sphingosine are mediators of cell death induced by gamma-irradiation. We studied the production of ceramide and the effects of exogenous ceramide on apoptosis in LNCaP prostate cancer cells that are highly resistant to gamma-irradiation-induced cell death. LNCaP cells can be sensitized to gamma-irradiation by tumor necrosis factor alpha (TNF-alpha) and, to a lesser degree, by the agonistic FAS antibody CH-11. TNF-alpha activated intrinsic and extrinsic apoptosis pathways and increased ceramide and sphingosine levels in irradiated LNCaP cells. CH-11 activated only the extrinsic apoptosis pathways and had a negligible effect on ceramide and sphingosine levels in irradiated LNCaP cells. Exogenous ceramide and bacterial sphingomyelinase sensitized LNCaP cells to radiation-induced apoptosis and had a synergistic effect on cell death after irradiation with TNF-alpha, but not with CH-11. Cell death effects after exposure to ceramide and irradiation were blocked by the serine protease inhibitor TLCK (Na-p-tosyl-L-lysine-chloromethylketone), but not by the caspase inhibitor z-VAD (2-val-Ala-Asp(oMe)-CH(2)F). During LNCaP cell apoptosis induced by exogenous ceramide, we observed activation of caspase-9, but not caspases-8, -3, or -7. The effect of ceramide occurred largely via the intrinsic mitochondrial apoptosis pathway and enhanced TNF-alpha, but not CH-11 effects on irradiated cells. The data show that ceramide enhanced activation of the intrinsic apoptotic pathway and enhanced cell death induced by TNF-alpha with or without gamma-irradiation. TNF-alpha and gamma-irradiation elevated levels of endogenous ceramide and activated the intrinsic cell death pathway.  相似文献   

20.
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号