首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin, a calcium-modulated effector protein, is an important mediator of the intracellular actions of calcium through its interaction with calmodulin-binding proteins. We report here that the immunoreactive levels of a calmodulin-binding protein, myosin light-chain kinase, are decreased in transformed chicken embryo fibroblasts.  相似文献   

2.
A calcium-modulated protein has been isolated from secondary cultures of virus transformed chicken embryo fibroblasts and has been characterized in terms of its physical, chemical, and functional properties. These properties demonstrate that this protein is a calmodulin and distinguish it from other calcium-modulated proteins found in various muscle and non-muscle tissues. In addition, this transformed cell calmodulin has been shown to be indistinguishable in both structure and function from normal cell calmodulins isolated from chicken gizzard and brain. A novel change in the electrophoretic behavior of these calmodulin preparations that is dependent on sample history has been observed. These alterations may be the basis for previous reports of tissue specific differences in calmodulin and for some of the differences occasionally observed in peptide maps of calmodulins.  相似文献   

3.
The binding of calmodulin to myelin basic protein and histone H2B.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. A calmodulin-binding protein of apparent mol.wt. 19 000 has been purified from chicken gizzard. Similar proteins have been isolated from bovine uterus, rabbit skeletal muscle and rabbit liver. 2. These proteins migrated as an equimolar complex with bovine brain calmodulin on electroporesis on polyacrylamide gels in the presence of Ca2+ and 6M-urea. The complex was dissociated in the presence of EGTA. 2. The chicken gizzard calmodulin-binding protein has been shown to be identical with chicken erythrocyte histone H2B on the basis of partial amino acid sequence determination. 4. The calmodulin-binding proteins of apparent mol.wt. 22 000 isolated previously from bovine brain [Grand & Perry (1979) Biochem. J. 183, 285-295] has been shown, on the basis of partial amino-acid-sequence determination, to be identical with myelin basic protein. 5. The activation of bovine brain phosphodiesterase by calmodulin is inhibited by excess bovine uterus calmodulin-binding protein (histone H2B). 6. The phosphorylation of myelin basic protein by phosphorylase kinase is partially inhibited, whereas the phosphorylation of uterus calmodulin-binding protein (histone H2B) is unaffected by calmodulin or troponin C. 7. The subcellular distribution of myelin basic protein and calmodulin suggests that the two proteins do not exist as a complex in vivo.  相似文献   

4.
To understand better the mechanisms involved in the transduction of a calcium signal into an intracellular response via multiple calcium-modulated proteins, we have examined the calcium-modulated proteins, S100 and calmodulin, and their intracellular targets in rat C6 glioma cells. Subconfluent, confluent, and postconfluent C6 cells contain predominantly, if not exclusively, the S100 beta polypeptide. The level of S100 beta in C6 cells increases approximately 20-fold from subconfluency to postconfluency whereas the level of calmodulin increases only about two-fold. The subcellular distribution of S100 beta and calmodulin in mitotic cells is similar. However, the subcellular distribution of these proteins in interphase cells is different and appears to change with cell density. Gel overlay analysis demonstrated that the S100- and calmodulin-binding protein profiles are significantly different and that some of the binding proteins appear to change in intensity with cell density. These data demonstrate that S100 beta is the predominant S100 polypeptide in C6 cells and suggest that changes in S100 beta and S100 beta-binding proteins may be involved in regulating S100-mediated intracellular processes in C6 cells. Our studies also suggest that the levels of S100 and calmodulin may be differentially regulated in C6 cells.  相似文献   

5.
We have analyzed the levels, subcellular distribution, and target proteins of two calcium-modulated proteins, S100 and calmodulin, in differentiated and undifferentiated rat C6 glioma cells. Undifferentiated and differentiated C6 cells express primarily the S100 beta polypeptide, and the S100 beta levels are four-fold higher in differentiated compared to undifferentiated cells. Double fluorescent labeling studies of undifferentiated cells demonstrated that S100 beta staining localized to a small region of the perinuclear cytoplasm and colocalized with the microtubule organizing center and Golgi apparatus. Analysis of differentiated C6 cells demonstrated that S100 beta distribution and S100 beta-binding protein profile changed significantly upon differentiation. In addition, the brain-specific isozyme of one S100-binding protein, fructose-1,6-bisphosphate aldolase C, can be detected in differentiated but not undifferentiated C6 cells. While changes in the subcellular distribution of calmodulin were not observed during differentiation, calmodulin levels and calmodulin-binding protein profiles did change. Altogether these data suggest that S100 beta and calmodulin regulate different processes in glial cells and that the regulation of the expression, subcellular distribution, and target proteins of S100 beta and calmodulin during differentiation is a complex process which involves multiple mechanisms.  相似文献   

6.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

7.
Carrot cell cultures were used to study the dynamics of calmodulin protein levels, calmodulin methylation, and calmodulin-binding proteins during plant growth and development. Comparisons of proliferating and nonproliferating wild carrot cells show that, while calmodulin protein levels does not vary significantly, substantial variation in post-translational methylation of calmodulin on lysine-115 is observed. Calmodulin methylation is low during the lag and early exponential stages, but increases substantially as exponential growth proceeds and becomes maximal in the postexponential phase. Unmethylated calmodulin quickly reappears within 12 h of reinoculation of cells into fresh media, suggesting that the process is regulated according to the cell growth state. Calmodulin and calmodulin-binding proteins were also analyzed during the formation and germination of domestic carrot embryos in culture. Neither calmodulin methylation nor calmodulin protein levels varied significantly during somatic embryogenesis. However, upon germination of embryos, the level of calmodulin protein doubled. By calmodulin overlay analysis, we have detected a major 54,000 M(r) calmodulin-binding protein that also increased during embryo germination. This protein was purified from carrot embryo extracts by calmodulin-Sepharose chromatography. Overall, the data suggest that calmodulin methylation is regulated depending upon the state of cell growth and that calmodulin and its target proteins are modulated during early plant development.  相似文献   

8.
Phosphoamino acid compositions were determined for 10 size classes of cellular proteins, separated by electrophoresis through one-dimensional sodium dodecyl sulfate-polyacrylamide gels. Phosphotyrosine-containing proteins were observed in uninfected chicken embryo fibroblasts in every size class analyzed, ranging from approximately 20,000 to greater than 200,000 daltons. Transformation of chicken embryo fibroblasts by Rous sarcoma virus or PRC II avian sarcoma virus led to increases in phosphorylation of proteins at tyrosine residues in all of these size classes. A large fraction of the phosphotyrosine-containing protein molecules observed in Rous sarcoma virus-transformed cells was larger than 100,000 daltons with a second broad peak in the 35,000- to 60,000-dalton range. This study suggests that there are a number of substrates of viral or cellular tyrosine-specific protein kinases, which have not yet been identified by other methods.  相似文献   

9.
P-57 is a neural specific calmodulin-binding protein   总被引:4,自引:0,他引:4  
P-57 is a novel calmodulin-binding protein which has recently been isolated from bovine cerebral cortex (Andreasen, T. J., Luetje, C. W., Heideman, W., and Storm, D. R. (1983) Biochemistry 22, 4615-4618). In contrast to all other calmodulin-binding proteins characterized thus far, P-57 has equivalent or higher affinity for calmodulin in the absence of free Ca2+ compared to the presence of Ca2+. In this study, the distribution of P-57 in other tissues and within brain was examined using a radioimmune assay and photoaffinity labeling with azido-125I-calmodulin. P-57 was not found in tissues other than brain, retina, and spinal cord. Within brain, P-57 levels varied from 0.1% of the total protein in white matter regions to about 0.5% in cell body-rich fractions. The protein was found in both membrane and soluble fractions. P-57 is the most abundant calmodulin-binding protein in brain and appears to be neural specific. The concentrations of P-57 in brain and its affinity for calmodulin in the absence of Ca2+ are sufficient to complex a significant fraction of the total calmodulin present.  相似文献   

10.
11.
In order to identify comparative aspects of the interaction of calmodulin with its target proteins, proton magnetic-resonance studies of complex formation between calmodulin and defined segments of phospholamban and caldesmon have been undertaken. Residues 3-15 in the cytoplasmic region of phospholamban, an integral membrane protein of cardiac sarcoplasmic reticulum believed to regulate the calcium pumping ATPase, are shown to contribute to interaction with calmodulin. Using wheat germ calmodulin specifically modified with a spin-label to provide the spectral means for spatial localisation, these residues of phospholamban were correlated with binding in the vicinity of the probe attached to Cys-27 in the N-terminal domain of calmodulin. This interaction, relevant to the mechanism of calmodulin-dependent phosphorylation of phospholamban that relieves its inhibitory influence on the calcium pump, provides a useful model system for comparative study of the properties of calmodulin-binding domains. We contrast here a calmodulin-binding segment in the C-terminal region of caldesmon localised by 1H-NMR study of the interface(s) between the two proteins. These observations are discussed in the context of other calmodulin-binding sequences.  相似文献   

12.
A method has been developed for binding calmodulin, radioiodinated by the lactoperoxidase method, to denaturing gels and has been used to attempt to identify the calmodulin-binding proteins of cerebral cortex postsynaptic densities (PSDs). Calmodulin primarily bound to the major 51,000 Mr protein in a saturatable manner; secondarily bound to the 60,000 Mr region, 140,000 Mr region, and 230,000 Mr protein; and bound in lesser amounts to a number of other proteins. The major 51,000 Mr calmodulin-binding protein is one of unknown identity. Binding of iodinated calmodulin to these proteins was blocked by EDTA, EGTA, chlorpromazine, and preincubation with unlabeled calmodulin. Calmodulin iodinated by the chloramine-T method, which inactivates calmodulin did not bind to the PSD but bound nonspecifically to histone. Calmodulin did not bind to proteins from a variety of sources for which calmodulin interactions have not been found. Except for three proteins, all of the proteins of synaptic membranes that bind calmodulin could be accounted for by proteins of the PSD which are a part of the synaptic membrane fraction. The major 51,000 M, protein and the corresponding iodinated calmodulin binding were greatly reduced in cerebellar PSDs and this difference between cerebral cortex and cerebellar PSDs is discussed in light of the possible function of calmodulin in synaptic excitatory responses.  相似文献   

13.
Calcium/calmodulin-mediated signal network in plants   总被引:24,自引:0,他引:24  
  相似文献   

14.
In Arabidopsis and other plants there are multiple calmodulin isoforms. However, the role of these isoforms in regulating the activity of target proteins is obscure. Here, we analyzed the interaction between a kinesin-like calmodulin-binding motor protein (Reddy, A. S. N., Safadi, F., Narasimhulu, S. B., Golovkin, M., and Hu, X. (1996) J. Biol. Chem. 271, 7052-7060) and three calmodulin isoforms (calmodulin-2, -4, and -6) from Arabidopsis using different approaches. Gel mobility and fluorescence shift assays revealed that the motor binds to all calmodulin isoforms in a calcium-dependent manner. Furthermore, all calmodulin isoforms were able to activate bovine calcium/calmodulin-dependent phosphodiesterase. However, the concentration of calmodulin-2 required for half-maximal activation of phosphodiesterase is 2- and 6-fold lower compared with calmodulin-4 and -6, respectively. The dissociation constants of the motor to calmodulin-2, -4, and -6 are 12.8, 27.0, and 27.8 nM, respectively, indicating that calmodulin-2 has 2-fold higher affinity for the motor than calmodulin-4 and -6. Similar results were obtained using another assay that involves the binding of (35)S-labeled calmodulin isoforms to the motor. The binding saturation curves of the motor with calmodulin isoforms have confirmed that calmodulin-2 has 2-fold higher affinity to the motor. However, the affinity of calmodulin-4 and -6 isoforms for the motor was about the same. Based on these studies, we conclude that all calmodulin isoforms bind to the motor protein but with different affinities.  相似文献   

15.
A ribosomal calmodulin-binding protein from Dictyostelium.   总被引:1,自引:0,他引:1  
Using 125I-calmodulin as a probe, we have recently identified specific Ca2+/calmodulin-binding proteins in cell extracts from the cellular slime mold, Dictyostelium discoideum: a major 22-kDa activity, a soluble 78/80-kDa protein, and several membrane-associated high Mr proteins (Winckler, T., Dammann, H., and Mutzel, R. (1991) Res. Microbiol. 142, 509-519). cDNA clones for at least two of these proteins have been isolated by ligand screening of a lambda gt11 prophage expression library. Antibodies directed against the lacZ-cDNA-encoded fusion protein from one of the clones recognized a single 22-kDa component in D. discoideum extracts which comigrated with the endogenous 22-kDa calmodulin-binding protein. The cDNA-derived nucleotide sequence predicts a protein of Mr 21,659 with 56% sequence identity (69% homology) with rat ribosomal protein L19. The endogenous 22-kDa calmodulin-binding activity was associated with ribosomes. It was found to be an integral constituent of the large ribosomal subunit, since it cosedimented with 60 S ribosomal subunits in sucrose density gradients in the presence of 0.5 M NH4Cl. Our observations point to a physiological role for calmodulin in the Ca2+ regulation of eukaryotic protein synthesis. Support for this comes from recent studies showing inhibition of protein synthesis by calmodulin antagonists in Ehrlich ascites tumor cells (Kumar, R. V., Panniers, R., Wolfman, A., and Henshaw, E.C. (1991) Eur. J. Biochem. 195, 313-319).  相似文献   

16.
In a screen for myosin-like proteins in embryonic chicken brain, we have identified a novel nuclear protein structurally related to hnRNP-U (heterogeneous nuclear ribonuclear protein U). We have called this protein chURP, for chicken U-related protein. In this screen, chURP was immunoreactive with two myosin antibodies and, in common with the unconventional myosins, bound calmodulin in vitro in both the presence and absence of calcium ions. Determination of 757 amino acids of the chURP sequence revealed that it shares 41% amino acid identity with human and rat hnRNP-U, although chURP and hnRNP-U appear not to be orthologous proteins. ChURP is ubiquitously expressed in the nuclei of all chick tissues and, as one of a growing number of calmodulin-binding proteins to be identified in the nucleus, further highlights the potential of calmodulin as a regulator of nuclear metabolism.  相似文献   

17.
The location of calmodulin in the pea plasma membrane   总被引:8,自引:0,他引:8  
Plasma membrane has been prepared from pea seedlings in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA). Calmodulin has been detected in these plasma membrane preparations using calcium overlay techniques, immunoblots, quantitation with antibodies raised against spinach calmodulin, phosphodiesterase activation, mobility shift, and heat stability. EGTA-stable calmodulin represents 0.5-1% of the total plasma membrane protein, and it is the only detectable calcium-binding protein in plasma membrane isolated under these conditions. The anti-spinach calmodulin reacts only with the N-terminal region of spinach calmodulin representing residues 1-106. The positioning of EGTA-stable calmodulin in the plasma membrane has been probed with trypsin and anti-spinach calmodulin. The data suggest that the calmodulin N-terminal region representing residues 1-106 projects from the membrane and could be available for binding other proteins. Calcium-dependent calmodulin binding to the plasma membrane has also been detected. Calcium-dependent calmodulin-binding proteins have been characterized using calmodulin overlay methods. The exposure of calmodulin-binding domains of most of these proteins from the plasma membrane is further suggested by their reaction with azidoiodinated calmodulin.  相似文献   

18.
The interaction of the brain-specific calmodulin-binding protein kinase C (PKC) substrate, neuromodulin (GAP 43), with membrane phospholipids was studied. Specific binding of neuromodulin to negatively charged phospholipids through electrostatic interactions was demonstrated. Comparison of the binding of neuromodulin to acidic phospholipids with that of neurogranin, a newly characterized calmodulin-binding PKC substrate (Baudier J., Deloulme, J. C., Van Dorsselaer, A., Black, D., and Mathes H. (1991) J. Biol. Chem. 266, 229-237) suggested that the conserved basic amino acid sequence which characterizes the two proteins and which corresponds to the PKC phosphorylation and calmodulin binding domain also serves as phospholipid binding site. In the absence of calmodulin, binding of neuromodulin to phosphatidylserine at low concentration parallels its phosphorylation by PKC, suggesting that formation of a ternary complex between neuromodulin, phosphatidylserine, and PKC is required for optimum neuromodulin phosphorylation. In the presence of calmodulin, the binding of neuromodulin to phosphatidylserine is inhibited, resulting in total inhibition of neuromodulin phosphorylation. Our results suggest that, in vivo, phosphorylation of neuromodulin may not only depend on protein kinase C (PKC)1 activation but also on the accessibility of the neuromodulin phosphorylation domain to activated membrane-bound PKC that could regulated by CaM.  相似文献   

19.
The quantitative binding of a phenothiazine drug to calmodulin, calmodulin fragments, and structurally related calcium binding proteins was measured under conditions of thermodynamic equilibrium by using a gel filtration method. Plant and animal calmodulins, troponin C, S100 alpha, and S100 beta bind chlorpromazine in a calcium-dependent manner with different stoichiometries and affinities for the drug. The interaction between calmodulin and chlorpromazine appears to be a complex, calcium-dependent phenomenon. Bovine brain calmodulin bound approximately 5 mol of drug per mol of protein with apparent half-maximal binding at 17 microM drug. Large fragments of calmodulin had limited ability to bind chlorpromazine. The largest fragment, containing residues 1-90, retained only 5% of the drug binding activity of the intact protein. A reinvestigation of the chlorpromazine inhibition of calmodulin stimulation of cyclic nucleotide phosphodiesterase further indicated a complex, multiple equilibrium among the reaction components and demonstrated that the order of addition of components to the reaction altered the drug concentration required for half-maximal inhibition of the activity over a 10-fold range. These results confirm previous observations using immobilized phenothiazines [Marshak, D.R., Watterson, D.M., & Van Eldik, L.J. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6793-6797] that indicated a subclass of calcium-modulated proteins bound phenothiazines in a calcium-dependent manner, demonstrate that the interaction between phenothiazines and calmodulin is more complex than previously assumed, and suggest that extended regions of the calmodulin molecule capable of forming the appropriate conformation are required for specific, high-affinity, calcium-dependent drug binding activity.  相似文献   

20.
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号