首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A morphologic and morphometric comparison between normal human and rat extraocular muscle nerves was performed using a computer-assisted method to obtain scatter diagrams of relative sheath thickness (g ratio = quotient axon diameter/fiber diameter). Human and rat extraocular muscle nerves (nervus abducens and ramus medialis n. oculomotorii) were excised immediately before the nerve branching at the entering point into the muscle. There was no difference in the absolute number of myelinated fibers between the oculomotor and abducens nerves in both species. The distribution of myelinated fibers was classified according to their g ratios into a two-stage density cluster analysis. Two main populations of nerve fibers for human oculomotor and rat oculomotor and abducens nerves and three main populations for human abducens nerve were differentiated morphometrically and mathematically, differing in their relative sheath thicknesses. There are distinct differences between scatter diagrams of human and rat extraocular muscle nerves, in correlation with the basically different oculomotor functions of these two species. The morphometric differences between human and rat extraocular muscle nerves suggest a difference in the myelination process and the presence of functionally different nerve fibers, strongly indicated by the populations and subpopulations of myelinating nerve fibers peculiar to extraocular muscle. The existence of more than two different types of myelinated fibers in the human nerves implies that the traditional classification based on fiber caliber must be reviewed and a comparison of different classes of nerve and muscle fibers should be performed.  相似文献   

2.
The oculomotor pattern which appears in intact preparations during desynchronized sleep is characterized by the irregular occurrence of isolated ocular movements and bursts of rapid eye movements (REM). This complex oculomotor pattern results from the activity of two premotor structures which influence the extraocular motoneurons during this phase of sleep: one is located in the pontine reticular formation, the other in the vestibular nuclei. In the decerebrate preparation the intravenous injection of an anticholinesterase leads to the appearance of a typical pattern of oculomotor activity, which differs from that occurring during physiological sleep in so far as it consists quite exclusively of bursts of REM which appear at very regular intervals. Lesion experiments as well as unit recordings have shown that these bursts of REM depend in particular upon rhythmic discharges of the vestibular nuclear neurons. The underlying anatomical structures responsible for these bursts of REM are therefore the vestibular nuclei, the oculomotor nuclei and the oculo-orbital system. This mechanism is under the influence of cholinergic reticular neurons which generate the oculomotor rhythm. We have postulated the existence of a self-excitatory cholinergic system, located in the pontine reticular formation, whose steady discharge impinges upon an oscillatory neuronal system located in the dorso-lateral pontine tegmentum, which transforms the tonic input into a sinusoidal final output. We have assumed also that the periodic increases in the discharge frequency of this oscillatory system trigger a fast phase generator acting on the different components of the REM system, and that the behavior of each component follows a first-order differential equation. The state of excitation of the components of the system is defined as proportional to frequency of nerve impulses. Assuming ipsilateral and crossed connections, a pattern of oculomotor activity is obtained that simulates the experimental oculomotor output fairly well. The repetition of the eye jerks is described by a Fourier series. The model proposed in this paper may be taken as a first approach in describing the generation mechanism of REM, and as a theoretical guide to new experimental researches and the development of other more realistic models.  相似文献   

3.
Mazer JA  Gallant JL 《Neuron》2003,40(6):1241-1250
Natural exploration of complex visual scenes depends on saccadic eye movements toward important locations. Saccade targeting is thought to be mediated by a retinotopic map that represents the locations of salient features. In this report, we demonstrate that extrastriate ventral area V4 contains a retinotopic salience map that guides exploratory eye movements during a naturalistic free viewing visual search task. In more than half of recorded cells, visually driven activity is enhanced prior to saccades that move the fovea toward the location previously occupied by a neuron's spatial receptive field. This correlation suggests that bottom-up processing in V4 influences the oculomotor planning process. Half of the neurons also exhibit top-down modulation of visual responses that depends on search target identity but not visual stimulation. Convergence of bottom-up and top-down processing streams in area V4 results in an adaptive, dynamic map of salience that guides oculomotor planning during natural vision.  相似文献   

4.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

5.
SHPS-1 is a transmembrane protein whose extracellular region interacts with CD47 and whose cytoplasmic region undergoes tyrosine phosphorylation and there by binds the protein tyrosine phosphatase SHP-2. Formation of this complex is implicated in regulation of cell migration by an unknown mechanism. A CD47-Fc fusion protein or antibodies to SHPS-1 inhibited migration of human melanoma cells or of CHO cells overexpressing SHPS-1. Overexpression of wild-type SHPS-1 promoted CHO cell migration, whereas expression of the SHPS-1-4F mutant, which lacks the phosphorylation sites required for SHP-2 binding, had no effect. Antibodies to SHPS-1 failed to inhibit migration of CHO cells expressing SHPS-1-4F. SHPS-1 ligands induced the dephosphorylation of SHPS-1 and dissociation of SHP-2. Antibodies to SHPS-1 also enhanced Rho activity and induced both formation of stress fibers and adoption of a less polarized morphology in melanoma cells. Our results suggest that engagement of SHPS-1 by CD47 prevents the positive regulation of cell migration by this protein. The CD47- SHPS-1 system and SHP-2 might thus contribute to the inhibition of cell migration by cell-cell contact.  相似文献   

6.
Summary The central projections of the pineal complex of the silver lamprey Ichthyomyzon unicuspis were studied by injection of horseradish peroxidase. The pineal tract courses caudally along the left side of the habenular commissure, and a few fibers penetrate the brain through the caudalmost portion of this commissure. Most of the fibers, however, continue caudally and enter the brain through the posterior commissure. The pineal tract projects bilaterally to the subcomissural organ, the superficial and periventricular pretectum, the posterior tubercular nucleus, the dorsal and ventral thalamus, the dorsal hypothalamus, the optic tectum, the torus semicircularis, the midbrain tegmentum, and the oculomotor nucleus. A few fibers decussate in the tubercular commissure, but the course of these decussate fibers could not be followed owing to the bilateral nature of the projections. No retrogradely labeled cells were found in the brain. With the exception of the projections to the optic tectum and torus semicircularis, the pineal projections in the silver lamprey are similar to those reported in other anamniote vertebrates.  相似文献   

7.
A laccase catalyzed oxidative treatment of wood pulp fibers has been found to induce unusual modifications of these fibers that are qualitatively different from those encountered when more severely degraded fibers are subjected to similar enzymatically catalyzed oxidative treatments. These results suggest that the physical/conformational state of the lignin of wood fibers determines which oxidation pathways dominate in a given oxidative treatment, leading to different lignin modifications depending on both the chemical and the physical structure of the lignin polymer. Spectroscopic measurements (ESR, IR, UV-Vis and fluorescence) show that the laccase treatment results in the formation of two different species in the dried fibers: one is interpreted as chemically transformed (via oxygen) lignin products, and the other as initial oxidation radicals which have gained stabilization against transformation into the first mentioned products via a migration mechanism. It is argued that these initial radicals may likely be cation radical (or hole state) parts in lignin. The migration mechanism is identified with site-to-site transfer or 'hopping' via electron transfer and it is postulated that this mechanism 'carries' cation radical parts of the lignin, produced at the surface of the fiber, into parts of the lignin where chemical transformation pathways are suppressed due to the lignin conformational state. The possible existence of such a migration mechanism, the relative dominance of which should depend sensitively on the polymer conformational state, may have implications for the biogeneration and biodegradation of lignin as well as for oxidative treatments of non-natural conjugated polymers.  相似文献   

8.
We previously demonstrated that exogenous expression of a truncated form of the tight junction protein ZO-3 affected junctional complex assembly and function. Current results indicate that this ZO-3 construct influences actin cytoskeleton dynamics more globally. We show that expression of the amino-terminal half of ZO-3 (NZO-3) in Madin-Darby canine kidney cells results in a decreased number of stress fibers and focal adhesions and causes an increased rate of cell migration in a wound healing assay. We also demonstrate that RhoA activity is reduced in NZO-3-expressing cells. We determined that ZO-3 interacts with p120 catenin and AF-6, proteins localized to the junctional complex and implicated in signaling pathways important for cytoskeleton regulation and cell motility. We also provide evidence that NZO-3 interacts directly with the C terminus of ZO-3, and we propose a model where altered interactions between ZO-3 and p120 catenin in NZO-3-expressing cells affect RhoA GTPase activity. This study reveals a potential link between ZO-3 and RhoA-related signaling events.  相似文献   

9.
The region that becomes the ventromedial nucleus of the hypothalamus (VMH) is surrounded by cells and fibers containing immunoreactive gamma-aminobutyric acid (GABA) by embryonic day 13 (E13), several days before the nucleus emerges in Nissl stains. As GABA plays many roles during neural development, we hypothesized that it influences VMH development, perhaps by providing boundary information for migrating neurons. To test this hypothesis we examined the VMH in embryonic mice in which the beta3 subunit of the GABA(A)-receptor, a receptor subunit that is normally highly expressed in this nucleus, was disrupted by gene targeting. In beta3 -/- embryos the VMH was significantly larger, and the distribution of cells containing immunoreactive estrogen receptor-alpha was expanded compared to controls. Using in vitro brain slices from wild-type C57BL/6J mice killed at E15 we found that treatment with the GABA(A) antagonist bicuculline increased the number of cells migrating per video field analyzed in the VMH. In addition, treatment with either bicuculline or the GABA(A) agonist muscimol altered the orientation of cell migration in particular regions of this nucleus. These data suggest that GABA is important for the organization of cells during VMH formation.  相似文献   

10.
Pharmacological studies on the body wall musculature of the sedentary polychaete Sabellastarte magnifica show a potential neurotransmitter role for monoamines and neuropeptides in this organism. All catecholamines induced contraction of longitudinal muscle strips, while serotonin and the neuropeptides FMRFamide and substance P caused a relaxation of both resting and active muscle. In addition, we demonstrate catecholaminergic and serotonergic pathways in the nervous system of this sabellid, using immunohistochemistry and catecholamine-induced fluorescence. The presence of neuropeptide-containing fibers in the nervous system of this polychaete has been previously reported. Together these results suggest that catecholamines act as excitatory transmitters on the longitudinal muscle cells of the body wall of S. magnifica, while serotonin and FMRFamide, and possible substance P, are inhibitory transmitters. The possibility of coexistence of serotonin and FMRFamide within the same neuronal cell bodies and fibers of this polychaete is also explored.  相似文献   

11.
Penetration of the central nervous system of the adult rat by the CVS strain of rabies virus and its two avirulent derivatives Av01 and Av02 has been studied by inoculation of the virus into the anterior chamber of the eye. The primary sites of penetration of CVS were (i) the intraocular parasympathetic oculomotor fibers, (ii) the retinopetal fibers of pretectal origin, and (iii) the intraocular fibers of the ophthalmic nerve. The mutant strains, however, lost the capacity to invade the two former groups of fibers, although their penetration into the trigeminal system was not impaired. Neither strain CVS nor the mutants infected primarily the intraocular adrenergic terminals and the optic nerve. Mutant strains, but not CVS, were able to infect the lens. These results indicate that the cholinergic receptor may not be the only receptor for rabies virus and that rabies virus is conveyed in the nervous system by retrograde axoplasmic flow. Strain CVS spread throughout the brain and propagated eventually back to the retina. The mutants penetrated the brain as well, but the infection was slow, involved different cerebral structures, and cleared up completely in 3 weeks, probably because of an efficient immune response.  相似文献   

12.
Patients with ephedrone parkinsonism (EP) show a complex, rapidly progressive, irreversible, and levodopa non-responsive parkinsonian and dystonic syndrome due to manganese intoxication. Eye movements may help to differentiate parkinsonian syndromes providing insights into which brain networks are affected in the underlying disease, but they have never been systematically studied in EP. Horizontal and vertical eye movements were recorded in 28 EP and compared to 21 Parkinson''s disease (PD) patients, and 27 age- and gender-matched healthy subjects using standardized oculomotor tasks with infrared videooculography. EP patients showed slow and hypometric horizontal saccades, an increased occurrence of square wave jerks, long latencies of vertical antisaccades, a high error rate in the horizontal antisaccade task, and made more errors than controls when pro- and antisaccades were mixed. Based on oculomotor performance, a direct differentiation between EP and PD was possible only by the velocity of horizontal saccades. All remaining metrics were similar between both patient groups. EP patients present extensive oculomotor disturbances probably due to manganese-induced damage to the basal ganglia, reflecting their role in oculomotor system.  相似文献   

13.
The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.  相似文献   

14.
The mechanism of coupling in adrenaline-induced ventricular bigeminy in sensitized hearts has been investigated in intact animals, isolated preparations, and single cardiac fibers. The electrophysiological and cardiovascular dynamic changes during the development of fixed interval coupling strongly indicate that the coupled beats result from stretch of subsidiary pacemaker fibers in the specialized ventricular conduction system, induced by the mechanical response to the normally conducted sinus impulse. The resulting intraventricular pressure elicits an extrasystole when a certain critical end systolic pressure for a particular animal is reached. The interval between the normal and premature ventricular beat decreases progressively as the intraventricular pressure rises, as a result of the combined action of adrenaline and postextrasystolic potentiation. The onset of ventricular bigeminy is preceded by a shift in the pacemaker site to the A-V junctional area, due to a differential effect of the anesthetic-adrenaline combination on fibers of the S-A node and those in the junctional area. The degree of prematurity of the coupled beat shows an inverse linear relationship to the intraventricular pressure of the initiating beat at the end of systole. The premature QRS complex occurs after a period of mechano-electrical latency, the duration of which is directly related to this pressure.  相似文献   

15.
Summary The pineal organ of neonatal rats was transplanted to the frontal part of the cerebral cortex or the cerebral interhemispheric fissure of an isogenic adult rat to determine whether pineal differentiation and pinealopetal innervation are affected by aberrant neuronal influences. Transplants were fixed for immunohistochemistry at 1, 2 and 6 months after transplantation. When treated with an anti-serotonin antibody, cells in transplants from both locations showed intense immunoreactivity and a morphology comparable to intact pinealocytes, indicating that the transplanted pinealocytes had differentiated normally. Tyrosine hydroxylase immunohistochemistry revealed that new catecholamine fibers of central nervous origin extended only into the periphery and not into the core of transplants grafted within the cortex. However, numerous catecholamine fibers were found in transplants placed in the interhemispheric fissure. These fibers were often accompanied by blood vessels, suggesting that they derived from sympathetic ganglia. Serotonin fibers, which are densely distributed in the cerebral cortex, were seldom found to enter transplants from both locations. These observations indicate that pineal cells express their characteristic properties even when transferred to a foreign milieu and that they do not receive novel innervation from the central nerves that normally do not innervate the intact pineal body; the transplant thereby retains the property of selective pinealopetal innervation.  相似文献   

16.
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

17.
Zhuravleva ZH 《Ontogenez》2002,33(3):230-235
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

18.
Visual attention: the where,what, how and why of saliency   总被引:6,自引:0,他引:6  
Attention influences the processing of visual information even in the earliest areas of primate visual cortex. There is converging evidence that the interaction of bottom-up sensory information and top-down attentional influences creates an integrated saliency map, that is, a topographic representation of relative stimulus strength and behavioral relevance across visual space. This map appears to be distributed across areas of the visual cortex, and is closely linked to the oculomotor system that controls eye movements and orients the gaze to locations in the visual scene characterized by a high salience.  相似文献   

19.
The superficial flexor muscle of the crayfish is a neuromuscular system in which the neurons form position-dependent connectivity patterns with the muscle fibers. This system could be formed with the help of a single medial-to-lateral gradient during development that embodies positional information. To test this gradient hypothesis we changed the nerve's normal medial entry point into the muscle by transplanting it to the middle of the muscle sheet. When all the muscle fibers were present in the target area, most of the neurons studied passed through a stage during regeneration in which they showed preference for either medial or lateral synapse formation. Those neurons that in normal animals innervated preferentially the medial fibers showed a medial preference for new contacts; the neuron that normally innervated the lateral fibers showed a lateral preference for new contacts; the neuron that normally innervated everywhere regenerated equally well into both medial and lateral fibers. Therefore, these neurons are able to detect information regarding their position within the muscle mass and respond to it by preferential synapse formation. The effect of a positional gradient could not be detected when half of the target field was removed prior to regeneration. In this instance, the neuron that innervated the missing target area now regenerated to almost all the available fibers. It is suggested that the interplay of positional cues with other factors at different points in time could determine the final connectivity patterns formed by these cells.  相似文献   

20.
Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号