首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila IMP (dIMP) is related to the vertebrate RNA-binding proteins IMP1-3, ZBP1, Vg1RBP and CRD-BP, which are involved in RNA regulatory processes such as translational repression, localization and stabilization. The proteins are expressed in many fetal tissues, including the developing nervous system, and IMP up-regulation in solid tumors correlates with a high metastatic potential and poor prognosis. In this study, we used immunohistochemistry and live-imaging of an endogenous promoter-driven GFP-dIMP fusion protein to reveal the expression pattern of dIMP protein throughout embryogenesis. In the cellular blastoderm, immunoreactivity was seen in the entire cell-layer, where it was localized apically to the nucleus, and in the pole cells. Later, the GFP-dIMP fusion protein appeared in the developing central nervous system, both in the brain and in the ventral nerve cord. In the peripheral nervous system, immunoreactivity was detected in both neurons and accessory cells of chordotonal and external sensory organs.  相似文献   

2.
3.
Zip code-binding protein 1 (ZBP-1) and its Xenopus laevis homologue, Vg1 RNA and endoplasmic reticulum-associated protein (VERA)/Vg1 RNA-binding protein (RBP), bind repeated motifs in the 3' untranslated regions (UTRs) of localized mRNAs. Although these motifs are required for RNA localization, the necessity of ZBP-1/VERA remains unresolved. We address the role of ZBP-1/VERA through analysis of the Drosophila melanogaster homologue insulin growth factor II mRNA-binding protein (IMP). Using systematic evolution of ligands by exponential enrichment, we identified the IMP-binding element (IBE) UUUAY, a motif that occurs 13 times in the oskar 3'UTR. IMP colocalizes with oskar mRNA at the oocyte posterior, and this depends on the IBEs. Furthermore, mutation of all, or subsets of, the IBEs prevents oskar mRNA translation and anchoring at the posterior. However, oocytes lacking IMP localize and translate oskar mRNA normally, illustrating that one cannot necessarily infer the function of an RBP from mutations in its binding sites. Thus, the translational activation of oskar mRNA must depend on the binding of another factor to the IBEs, and IMP may serve a different purpose, such as masking IBEs in RNAs where they occur by chance. Our findings establish a parallel requirement for IBEs in the regulation of localized maternal mRNAs in D. melanogaster and X. laevis.  相似文献   

4.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

5.
Xenopus Vg1 mRNA is localized to the vegetal cortex during oogenesis in a process involving microtubules and microfilaments and proteins that specifically recognize the vegetal localization element (VLE) within the 3' untranslated region. One of the best characterized VLE-binding proteins is Vg1RBP or Vera. Primary sequence analysis of Vg1RBP and its homologs suggests that most of its open reading frame is occupied by RNA-binding modules, including two RRMs and four KH domains, arranged as three pairs of didomains. In the first detailed domain analysis of Vg1RBP, we show that the interaction of Vg1RBP with the VLE requires both KH didomains, but not the RRM didomain, and moreover that the KH didomains contribute cooperatively to RNA binding. In the full-length protein, individual KH domains display significant redundancy, and their relative importance appears to vary with the RNA target. We also demonstrate that the KH34 didomain mediates Vg1RBP self-association, which is stabilized by RNA, and occurs in vivo as well as in vitro. Altogether, our findings highlight the importance of multiple KH domains in mediating RNA-protein and protein-protein interactions in the formation of a stable complex of Vg1RBP and Vg1 mRNA.  相似文献   

6.
Ruggiu M  Cooke HJ 《Gene》2000,252(1-2):119-126
In Drosophila RNA-binding proteins play a fundamental role in key developmental pathways, such as sex determination. There is emerging evidence suggesting that RNA-binding proteins play a central role in regulation of development in mammals as well. We are interested in spermatogenesis as a model for cell differentiation and development in mammals. Two Y-encoded candidate spermatogenesis genes, RBMY and DAZ, have been isolated by positional cloning from infertile patients. They both encode putative RNA-binding proteins of the RRM (RNA recognition motif) type, and the high degree of conservation of both these gene families suggests an important role in spermatogenesis. Mice with a null allele for Dazl1, the mouse homologue of DAZ, are infertile due to a meiotic entry defect. Male flies mutant for boule, the Drosophila homologue of Dazl1, are infertile due to a G(2)/M meiotic block. However, no data has been published yet about the biochemical properties of the DAZ/DAZL1 proteins. We report here that Dazl1 is able to form homoheterodimers both in vivo and in vitro, that this activity is due to a novel protein-protein interaction domain, and that homotypic interaction activity is RNA-independent.  相似文献   

7.
8.
Function of RNA-binding protein Musashi-1 in stem cells   总被引:19,自引:0,他引:19  
Musashi is an evolutionarily conserved family of RNA-binding proteins that is preferentially expressed in the nervous system. The first member of the Musashi family was identified in Drosophila. This protein plays an essential role in regulating the asymmetric cell division of ectodermal precursor cells known as sensory organ precursor cells through the translational regulation of target mRNA. In the CNS of Drosophila larvae, however, Musashi is expressed in proliferating neuroblasts and likely has a different function. Its probable mammalian homologue, Musashi-1, is a neural RNA-binding protein that is strongly expressed in fetal and adult neural stem cells (NSCs). Mammalian Musashi-1 augments Notch signaling through the translational repression of its target mRNA, m-Numb, thereby contributing to the self-renewal of NSCs. In addition to its functions in NSCs, the role of mammalian Musashi-1 protein in epithelial stem cells, including intestinal and mammary gland stem cells, is attracting increasing interest.  相似文献   

9.
10.
The human KOC gene which is highly expressed in cancer shows typical structural features of an RNA binding protein. We analyzed the temporal and spatial expression pattern of KOC in mouse embryos at different gestational ages. The expression of KOC seems to be ubiquitous at early stages. During advanced gestation highest KOC expression occurs in the gut, pancreas, kidney, and in the developing brain. The expression pattern of KOC was compared to its Xenopus homologue Vg1-RBP during frog development. Similar expression was found in these organs suggesting an important functional role of the homologous proteins in embryonic development.  相似文献   

11.
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.  相似文献   

12.
13.
Cytoplasmic localization of mRNA molecules is a powerful mechanism for generating cell polarity. In vertebrates, one paradigm is localization of Vg1 RNA within the Xenopus oocyte, a process directed by recognition of a localization element within the Vg1 3' UTR. We show that specific base changes within the localization element abolish both localization in vivo and binding in vitro by a single protein, VgRBP60. VgRBP60 is homologous to a human hnRNP protein, hnRNP I, and combined immunolocalization and in situ hybridization demonstrate striking colocalization of hnRNP I and Vg1 RNA within the vegetal cytoplasm of the Xenopus oocyte. These results implicate a novel role in cytoplasmic RNA transport for this family of nuclear RNA-binding proteins.  相似文献   

14.
The dynamics of vitellogenin mRNA expression during ovarian maturation in Macrobrachium rosenbergii were examined by measuring hemolymph vitellogenin (Vg) levels and Vg mRNA expression in the hepatopancreas and ovary at differing reproductive stages in both intact and eyestalk ablated animals. Vg mRNA was quantified using real-time RT-PCR and hemolymph Vg was measured by enzyme immunoassay. In intact animals, Vg mRNA levels in the hepatopancreas and hemolymph Vg levels showed a gradual increase during the molt cycle concomitant with increasing gonadosomatic index (GSI), with Vg levels decreasing prior to ecdysis although GSI continued to increase. Eyestalk ablation was seen to accelerate Vg synthesis as well as ovarian maturation, although it did not alter the overall pattern of Vg expression. Vg mRNA expression was negligible in the ovary of both intact and eyestalk ablated animals, confirming that the hepatopancreas is the principal site of Vg synthesis in M. rosenbergii with the ovary being only a minor contributor. This study has shown that Vg synthesis is correlated to ovarian maturation and the molt cycle in M. rosenbergii.  相似文献   

15.
16.
After mid-blastula transition, populations of cells within the Xenopus embryo become motile. Using antisense morpholino oligonucleotides, we find that Vg1 RBP, an RNA-binding protein implicated in RNA localization in oocytes, is required for the migration of cells forming the roof plate of the neural tube and, subsequently, for neural crest migration. These cells are properly determined but remain at their site of origin. Consistent with a possible role in cell movement, Vg1 RBP asymmetrically localizes to extended processes in migrating neural crest cells. Given that Vg1 RBP is a member of the conserved VICKZ family of proteins, expressed in embryonic and neoplastic cells, these data shed light on the likely role of these RNA-binding proteins in regulating cell movements during both development and metastasis.  相似文献   

17.
The Y-box proteins are a family of highly conserved nucleic acid binding proteins which are conserved from bacteria to human. In this report we have identified a new member of this family from Drosophila melanogaster. Degenerate-PCR was used to identify a conserved region within the highly conserved cold-shock domain (CSD) of Y-box proteins. Subsequently, the cDNA for this gene was sequenced, and the identified open reading frame was named ypsilon schachtel (yps). The expression pattern of yps indicates that this gene is expressed throughout development with the highest level of expression found in adult flies. In situ hybridization shows that the yps mRNA is maternally loaded into the egg cytoplasm. In addition, there appears to be expression of yps mRNA in mesodermal tissue during embryogenesis. YPS, while containing a conserved CSD, is novel in that it completely lacks the alternating acidic and basic regions found in the C-terminus of the other vertebrate eukaryotic Y-box proteins. The CSD of yps was purified and gel-shift analysis showed that this domain can interact with RNA. We predict that YPS would be an RNA-binding protein due to these results and the motifs which have been identified within the amino acid sequence.  相似文献   

18.
19.
In situ hybridization and immunohistochemical techniques were used to investigate the dynamics of vitellogenin (Vg) mRNA expression and Vg uptake during ovarian maturation in the hepatopancreas and ovary at differing stages of ovarian maturation in both intact and eyestalk ablated female Macrobrachium rosenbergii. In the hepatopancreas of intact animals, Vg mRNA expression was detected faintly two days after ecdysis, and signals showed a gradual increase as the molt cycle advanced to the premolt stages, but decreased at the late premolt stage. Vg mRNA was detected in the R-cells of the hepatopancreas, indicating that these cells are responsible for synthesizing Vg. No Vg mRNA expression was observed in the ovary. Immunohistochemistry results for the hepatopancreas showed a pattern of staining intensity similar to that of in situ hybridization. Increases in the accumulation of yolk protein in the oocytes occurred concomitantly with increasing Vg mRNA expression. In eyestalk ablated animals, Vg mRNA expression and Vg uptake showed similar but accelerated patterns to those of intact animals. This study has confirmed on the cellular level previous results that Vg synthesis is intrinsically correlated to ovarian maturation and the molt cycle in M. rosenbergii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号