首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxaphene (CAS No. 800-35-2) is a complex mixture of several hundred components that was used worldwide primarily as an agricultural pesticide with insecticide effects in the second half of the 20th century. In vitro investigations of the genotoxicity and mutagenicity of toxaphene were generally described in the literature, but they provided somewhat equivocal results. We re-evaluated the genotoxicity of technical toxaphene in two prokaryotic systems. The SOS Chromotest showed high sensitivity to toxaphene: three concentrations (40, 20 and 10 mg/l) were clearly positive and the dose–response effect was evident. In the umuC assay, a dose-dependent increase in genotoxic activity was observed at toxaphene concentrations from 2.5 to 40.0 mg/l, but these results were found to be not significant. The genotoxicity of toxaphene and its photodegradation products after UV-irradiation (3–6–9 h) at concentrations ranging from 7.5 to 60.0 mg/l was also examined in this study. An irradiated solution of technical toxaphene after 3 h showed no significant evidence of bacterial growth inhibition. However, exposure of Salmonella to 6 h UV-irradiated toxaphene showed a toxic effect compared with the negative control. After 9 h irradiation, a decrease of bacterial growth was observed. Activity of β-galactosidase in the presence of a toxaphene solution was significantly increased after 6 and 9 h irradiation, reaching values that were 2.4- and 3.1-fold higher, respectively, than the control, which exceeded the criteria of significant genotoxicity. These results show that while technical toxaphene is a weak, direct-acting mutagen in some bacterial tests, a dose-dependent toxicity and genotoxicity of its photoproducts could be conclusively demonstrated by the umuC test.  相似文献   

2.
The genotoxic activity of 11 mycotoxins was investigated inEscherichia coli K 12. The induction of the SOS functionsfi A whose level of expression is monitored by means of asfi A:: lac Z operon fusion was assayed by measuring the-galactosidase activity in the PQ 37 strain. Most of these fungal metabolites did not induce SOS response in this bacterial test. Only aflatoxicol, a reduced metabolite of aflatoxin B1 was well detected as an SOS inducer if metabolic activation was performed. Patulin, penicillic acid and viomellein are only weak inducing agents. The other fungal compounds tested failed to demonstrate a positive SOS inducing activity. Relationship between SOS chromotest, mutagenicity toSalmonella typhimurium andin vivo carcinogenicity was discussed.  相似文献   

3.
Compounds derived from 1,2,4-oxadiazole have being reported for their anti-inflamatory activity. However, those compounds should be devoid of any genotoxic side effect. In this work, the genotoxic activity of peptidomimetic moiety-containing 1,2,4-oxadiazoles derivatives was tested based on the Ames and SOS Chromotest. The results showed no mutagenic activity on the Ames test for 3-[3-phenyl-1,2,4-oxadiazol-5-yl] propionic acid (POPA) parental drug, but a weak SOS response induction on Chromotest. The chemical modifications reduced that response to a non-significative level, with l-phenylalanine peptidomimetic derivative being showing the lowest induction response. The results pointed out for the effectiveness of promoting chemical modifications of biological active compounds to increase its mode of action, showed in previous work, without increasing and even decreasing its DNA damage effect.  相似文献   

4.
Compounds derived from 1,2,4-oxadiazole have being reported for their anti-inflammatory activity. However, those compounds should be devoid of any genotoxic side effect. In this work, the genotoxic activity of peptidomimetic moiety-containing 1,2,4-oxadiazoles derivatives was tested based on the Ames and SOS Chromotest. The results showed no mutagenic activity on the Ames test for 3-[3-phenyl-1,2,4-oxadiazol-5-yl] propionic acid (POPA) parental drug, but a weak SOS response induction on Chromotest. The chemical modifications reduced that response to a non-significative level, with l-phenylalanine peptidomimetic derivative being showing the lowest induction response. The results pointed out for the effectiveness of promoting chemical modifications of biological active compounds to increase its mode of action, showed in previous work, without increasing and even decreasing its DNA damage effect.  相似文献   

5.
Abstract. Non-differentiated tissue cultures (calli) of tobacco were found to be more sensitive to chloramphenicol (CAP) than differentiated tissues (shoots). The difference is especially manifested in darkness and at an irradiation regime lacking u.v. and blue light. Photodegradation of CAP solutions was demonstrated at moderate light fluence rates (6–15 Wm−2). The evidence indicates that the final products of photodegradation may be toxic or non-toxic according to the irradiation regime. The implication of the present findings in establishing a selection system for resistance to chemicals, and especially CAP, using plant tissue cultures, is discussed.  相似文献   

6.
The genotoxic potential of benzophenone and its metabolically related compounds, benzhydrol and p-benzoylphenol, was investigated using human cytochrome P450 (P450) enzymes. Benzophenone and its two metabolites (0.1-1mM) showed a suppression of bacterial growth without any P450 system, but no induction of umu gene expression was observed in Salmonella typhimurium TA1535/pSK1002. Human liver microsomes induced the bacterial cytotoxicity of these compounds without any umu gene expression. On the other hand, with the addition of Escherichia coli membranes expressing recombinant human P450 2A6 and NADPH-cytochrome P450 reductase (NPR), benzophenone showed umu gene expression (64 umu units/min/nmol) P450 2A6). Moderate activation of benzophenone by P450 1A1/NPR membranes, 1A2/NPR membranes, or 1B1/NPR membranes was also observed. Activation of benzhydrol and p-benzoylphenol by the P450/NPR system was similar to that of benzophenone. These results suggest that benzophenone and its metabolically related benzhydrol and p-benzoylphenol can be bioactivated by P450 2A6 and P450 family 1 enzymes. Until now, benzophenone has been investigated mainly in terms of estrogenic activity and cytotoxicity, however, the genotoxic activation of benzophenone by human cytochrome P450s should be examined in terms of the risks to humans.  相似文献   

7.
T Gebel  A Koenig 《Mutation research》1999,444(2):405-411
The bacterial SOS chromotest with Escherichia coli PQ37 was used for the assessment of genotoxicity of combined xenobiotic treatments. The modulation of test compound genotoxicity by dimethyl sulfoxide (DMSO), a common solvent for test compounds, was assessed as well. It was shown that DMSO modulated SOS chromotest genotoxicity of several xenobiotics: in comparison to test compound dissolution in water, the commonly used addition of 3.2% (v/v) DMSO as solvent lead to a significant increase in the genotoxicity of K(2)RhCl(5) and beta-propiolactone (BPL). However, the effects of cisplatin decreased significantly when DMSO was added. Thus, albeit DMSO is not genotoxic in this test itself, it can interfere with SOS chromotest responses. Further experiments were performed in the absence of DMSO. BPL and cisplatin in combination showed an over-additive synergism in SOS genotoxicity as well as K(2)RhCl(5) and cisplatin did. Addition of Pd(NH(3))(4)Cl(2) and NaAsO(2), which are non-genotoxic in the SOS chromotest, did not enhance the K(2)RhCl(5)- or BPL-mediated SOS sfiA induction. Nevertheless, at the highest subcytotoxic dose of NaAsO(2) tested (200 microM), a slight yet significant suppression of BPL-mediated SOS genotoxicity was observed. These results confirm that the SOS chromotest is a useful tool for the rapid evaluation of the combined genotoxicity of compound mixtures. However, the use of DMSO as test solvent has to be taken with caution.  相似文献   

8.
In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity.  相似文献   

9.
A study was conducted using a combined testing protocol (CTP), to determine whether short-term biological end-points, singly or in combination, are sufficiently sensitive to identify damage induced by exposure to ambient levels of industrial chemicals. A small-scale inhalation set-up which is both economical and easy to assemble was designed. Mice were exposed to 4 concentrations of a custom-blend mixture of benzene, chloroprene, epichlorohydrin and xylene in a ratio of 2:2:1:2, respectively. The concentrations for benzene, chloroprene and xylene were 0, 0.1, 1.0 and 10 ppm each. Concentrations for epichlorohydrin were half those for the other components. Groups of 22 males and 22 female mice were exposed to each concentration of the mixture for 3 and 6 weeks. Selected biological end-points including urine mutagenesis, bone marrow cell aberrations and micronuclei, spleen lymphocyte aberrations and liver enzyme induction were monitored. The spleen lymphocyte aberrations and liver enzyme induction were the most sensitive end-points. The lymphocytes showed a significant induction of chromosome aberrations from exposure for 3 weeks to all 3 concentrations of the mixtures. After 6 weeks of exposure, significant induction of aberrations was observed after exposure to low and medium concentrations but not to the high concentration. This lack of response at the high concentration after 6 weeks exposure, appeared to correlate with a significant induction of glutathione S-transferase in the liver. Since this enzyme is known to detoxify 3 of the 4 chemicals in our mixture, it may indicate a detoxification mechanism after enzyme induction. The present study indicates that the CTP is sufficiently sensitive to identify toxicological effects after exposure to ambient levels of a gas mixture.  相似文献   

10.
The herbicide trifluralin (I)(N,N-di-n-propyl-2,6-dinitro-4-trifluoromethylaniline) decomposes, by the action of UV-Vis light (lambda > 300 nm), to several products, the most important (because they give subsequent photochemical reactions) being N-n-propyl-2,6-dinitro-4-trifluoromethylaniline (VI), 2-ethyl-7-nitro-5-trifluoromethyl-1H-benzimidazole 3-oxide (VII) and 2,6-dinitro-4-trifluoromethylaniline (XII). The time evolution of degradation of trifluralin (I) and the aforementioned three main photoproducts was studied in water and acetonitrile as solvents. The pseudo-first order rate constants allow one to calculate the branching ratios for some of the reactions involved. The preference for either N-dealkylation or cyclization depends on the solvent employed. Dissolved oxygen accelerates the photodegradation, especially the dealkylation.  相似文献   

11.
The lack of genotoxicity of sodium fluoride in a battery of cellular tests   总被引:2,自引:0,他引:2  
In a comprehensive assessment of genotoxicity, sodium fluoride was evaluated in a battery of cellular tests providing different genetic end points and biotransformation capabilities. The tests included the following: rat hepatocyte primary culture/DNA repair assay, Salmonella typhimurium histidine locus reversion assay, adult rat liver epithelial cell/hypoxanthine guanine phosphoribosyl transferase mutation assay, and sister chromatid exchange in two target cell types, human peripheral blood lymphocytes and Chinese hamster ovary cells. Negative findings were made in all assays, indicating that sodium fluoride is not genotoxic in these assays.Abbreviations ARL adult rat liver epithelial cell - CHO Chinese hamster ovary cell - HGPRT hypoxanthineguanine phosphoribosyl transferase - HPBL human peripheral blood lymphocyte - HPC hepatocyte primary culture - SCE sister chromatid exchange  相似文献   

12.
In 0.05--0.1 mmol.l-1 concentration, bilirubin inhibits ADP-activated respiration of isolated liver mitochondria; it has no effect on respiration in the absence of ADP. Bilirubin-induced inhibition of respiration is not abolished by serum albumin, but bilirubin bound to serum albumin and the photodegradation products of bilirubin have no inhibitory effect.  相似文献   

13.
The large majority of N-nitroso compounds (NOC) have been found to produce genotoxic effects and to cause tumor development in laboratory animals; four NOC have been classified by the International Agency for Research on Cancer (IARC) as probably and another 15 as possibly carcinogenic to humans. A considerable fraction of drugs are theoretically nitrosatable due to the presence of amine, amide or other groups which by reacting with nitrite in the gastric environment, or even in other sites, can give rise to the formation of NOC, and in some cases other reactive species. This review provides a synthesis of information on the chemistry of NOC formation, the carcinogenic activity of NOC in animals and humans and the inhibitors of nitrosation reactions. It contains information on the drugs which have been tested for the formation of NOC by reaction with nitrite and the genotoxic-carcinogenic effects of their nitrosation products. In an extensive search we have found that 182 drugs, representing a wide variety of chemical structures and therapeutic activities, were examined in various experimental conditions for their ability to react with nitrite, and 173 (95%) of them were found to form NOC or other reactive species. Moreover, 136 drugs were examined in short-term genotoxicity tests and/or in long-term carcinogenesis assays, either in combination with nitrite or using their nitrosation product, in order to establish whether they produce genotoxic and carcinogenic effects; 112 (82.4%) of them have been found to give at least one positive response. The problem of endogenous drug nitrosation is largely unrecognized. Only a small fraction of theoretically nitrosatable drugs have been examined for the possible formation of genotoxic-carcinogenic NOC, guidelines for genotoxicity testing of pharmaceuticals do not indicate the need of performing the appropriate tests, and patients are not informed that the drug-nitrite interaction and the consequent risk can be reduced to a large extent by consuming the nitrosatable drug with ascorbic acid.  相似文献   

14.
In this study, a phytosterol preparation ("ultrasitosterol"; 80% beta-sitosterol) and an oxidized ultrasitosterol preparation were evaluated for reproductive effects in zebrafish. Adults were exposed in a continuous flow to 10 microg/L and 100 microg/L ultrasitosterol and oxidized ultrasitosterol, and to 0.27 microg/L 17beta-estradiol and 0.28 microg/L testosterone for 3 weeks. Biomarkers analysed included plasma vitellogenin, testosterone, 11-ketotestosterone, 17beta-estradiol, and gonadal histopathology. Ovarian steroid production of testosterone and 17beta-estradiol was examined in isolated zebrafish follicles exposed in vitro to the compounds at the same concentrations as in vivo. Vtg was induced in males exposed to ultrasitosterol, and in males and females exposed to 17beta-estradiol. Males exposed to oxidized phytosterols showed increased levels of testosterone and 11-ketotestosterone, and accelerated spermatogenesis. Increased follicular atresia was observed in females exposed to oxidized phytosterols and 17beta-estradiol. Correlation analyses between biomarkers revealed more intercorrelated values for females than for males, and the strongest associations were found in females exposed to oxidized phytosterols. Testosterone production was significantly increased in follicles exposed to the oxidized phytosterol preparations. These findings indicate that the phytosterol mixture is weakly estrogenic in male fish, and that the oxidized phytosterol mixture contains substances that may interfere with spermatogenesis, oogenesis and gonadal steroidogenesis in zebrafish.  相似文献   

15.
The submission of data on genotoxicity is a precondition for marketing authorisation respectively registration of herbal medicinal products (HMPs) with well established or traditional use in some countries. In European regulatory guidelines prepared by the Committee on Herbal Medicinal Products (HMPC) of the European drug regulatory agency EMA, a test strategy is defined giving a pragmatic framework adapted to the assessment of the potential genotoxicity of HMPs. It describes a stepwise approach, including the possibility to reduce the number of extracts of a herbal drug to be tested by the use of a bracketing and matrixing approach. According to this strategy, Kooperation Phytopharmaka, a scientific society in the field of HMPs, has so far coordinated the conduction of genotoxicity tests for 30 herbal drugs within the frame of a joint project of several manufacturers of HMPs. Results are delivered to the cooperation partners for use in regulatory applications.  相似文献   

16.
Toxicological and genotoxicological investigation of complex mixtures is one of the main focus of the recent research in toxicology. Testing complex mixtures present a formidable scientific problem since most recently available toxicological data has been obtained from single substance studies and is not simply transferable to mixtures of chemicals. Although there are no special strategies and standard protocols available for determining toxic and genotoxic effects of complex mixtures, the fundamental concepts of evaluation are the same as those for single substances.The focus of interest of the submitted paper is the genotoxicological characterisation of a complex mixture of mostly perhalogenated hydrocarbons which is generated as a waste product from the plasma etching process in the semiconductor industry. By use of several in vitro test systems (comet assay and micronucleus test), the clastogenic potency of the mixture was tested in various human cell types (lymphocytes and normal bronchial epithelial cells) and in rat hepatocytes. Results demonstrated that the complex perhalogenated hydrocarbons mixture causes DNA single-strand breaks and micronuclei formation, and direct concentration-to-effect correlations were proved in all experiments. The presence of an external metabolising system (S9 mix from rat hepatocytes) in human cell culture systems did not cause any change of the observed effects when compared to experiments performed in the absence of the S9 mix. Therefore, we conclude that the mixture acts as direct genotoxicant and that there is no detoxification by the external enzyme system.Further, convincing and reproducible results of the in vitro comet assay and the micronucleus assay in primary human cell cultures indicated these tests may be utilized for the genotoxicological analyses of complex mixtures with concern to human health hazard.  相似文献   

17.
Genotoxic activity of organic chemicals in drinking water   总被引:15,自引:0,他引:15  
J R Meier 《Mutation research》1988,196(3):211-245
The information summarized in this review provides substantial evidence for the widespread presence of genotoxins in drinking water. In many, if not most cases, the genotoxic activity can be directly attributed to the chlorination stage of drinking water treatment. The genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Genotoxic activity in drinking water concentrates has been most frequently demonstrated using bacterial mutagenicity tests but results with mammalian cell assay systems are generally consistent with the findings from the bacterial assays. There is currently no evidence for genotoxic damage following in vivo exposures to animals. In some locations genotoxic contaminants of probable industrial and/or agricultural origin occur in the source waters and contribute substantially to the genotoxic activity of finished drinking waters. The method used for sample concentration can have an important bearing on study results. In particular, organic acids account for most of the mutagenicity of chlorinated drinking water, and their recovery from water requires a sample acidification step prior to extraction or XAD resin adsorption. Considerable work has been done to determine the identity of the compounds responsible for the mutagenicity of organic concentrates of drinking water. Recently, one class of acidic compounds, the chlorinated hydroxyfuranones, has been shown to be responsible for a major part of the mutagenic activity. Strategies for drinking water treatment that have been evaluated with respect to reduction of genotoxins in drinking water include granular activated carbon (GAC) filtration, chemical destruction, and the use of alternative means of treatment (i.e., ozone, chlorine dioxide, and monochloramine). GAC treatment has been found to be effective for removal of mutagens from drinking water even after the GAC is beyond its normal use for organic carbon removal. All disinfectant chemicals appear to have the capacity of forming mutagenic chemicals during water treatment. However, the levels of mutagenicity formed with the alternative disinfectants have been generally less than those seen with chlorine and, especially in the case of ozone, highly dependent on the source water.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Genotoxic activity of potassium permanganate in acidic solutions   总被引:6,自引:0,他引:6  
Potassium permanganate (KMnO4) combined with sulfuric acid is a strongly oxidizing mixture which has been recommended for the destruction and the decontamination of various mutagens/carcinogens in the publication series of the International Agency for Research on Cancer. Evaluation of the genotoxicity of 4 potassium permanganate solutions was performed using a microtechnique of the Ames test with the tester strains TA97, TA98, TA100 and TA102 with and without metabolic activation. Presence of direct-acting mutagens was detected in all the samples with the tester strain TA102 without S9 mix (163-357 revertants/microliters of the solutions). Three samples containing either acetone or ethanol as an organic solvent also induced a mutagenic response on tester strain TA100 without S9 mix (167-337 revertants/microliters). In addition, DNA damage in human peripheral blood lymphocytes was also measured for one of the mixtures by a new technique: the single-cell gel assay (SCGA). A sample with no organic solvent induced DNA damage in human lymphocytes with a dose-response relationship as determined by SCGA. The major mutagenic agent generated by the permanganate solutions was found to be manganese ion (Mn2+). Both manganese sulfate (MnSO4) and manganese chloride (MnCl2) gave mutagenic dose-response relationships on tester strain TA102 without S9 mix. The mutagenic potencies were 2.8 and 2.4 revertant/nmole for MnSO4 and MnCl2 respectively. MnCl2 also induced DNA damage in human lymphocytes as determined by the SCGA. The genotoxic effects of KMnO4 in acidic conditions were probably mediated by the conversion of MnO4- to Mn2+. KMnO4 in alkaline solutions did not produce mutagenic species and may offer an alternative for the degradation of genotoxic compounds.  相似文献   

19.
Results from new genotoxicity tests in laboratory animals have necessitated a comprehensive re-evaluation of the mutagenic potential of styrene in vivo. Available data suggest that styrene, after being metabolized to styrene oxide, is weakly positive in indicator tests detecting DNA adducts, DNA strand breaks and sister chromatid exchanges (SCEs). There is no convincing evidence of styrene clastogenicity in experimental animals when the quality of the studies and the plausibility of the test results are considered. Equivocal results were obtained after exposure to high doses causing lethality. A recently published in vivo micronucleus test (MNT) in bone marrow cells of mice conforming to the current OECD guideline was clearly negative. Consequently, our evaluation of the published genotoxicity data comes to the conclusion that styrene at high doses can induce genotoxic effects in indicator tests. These DNA effects depend upon the exposure levels of the target cells, the metabolic activation to styrene oxide and the efficiency of detoxification. Mutagenic effects of styrene can only be expected under extreme exposure conditions if styrene oxide is not efficiently detoxified and primary DNA lesions are not completely repaired. However, there is no clear evidence that styrene induces mutagenic/clastogenic effects in vivo when tested under appropriate test conditions.  相似文献   

20.
The reactivity of photodegradation products of benzo(a)pyrene vs. DNA has been assessed using both genomic and oligonucleotide based DNA electrochemical sensors. The kinetic of a photooxidation reaction of benzo(a)pyrene (BaP) carried out in controlled conditions using a 6 W UV lamp peaked at 365 nm has been studied using LC with fluorimetric detection. Degradation of benzo(a)pyrene by both UV and UV/H(2)O(2) exhibited pseudo-first-order reaction kinetics with half-lives ranging from 3.0 to 9.8h depending on the pH and on the amount of H(2)O(2). The oxidation products of benzo(a)pyrene obtained in different conditions were tested on genomic ssDNA electrochemical sensors obtained via immobilisation of salmon testis ss-DNA on graphite screen-printed electrodes. Guanines oxidation signals obtained using chronopotentiometry were used to detect the interaction of the products with DNA. The dose-response curve obtained with benzo(a)pyrene incubated 24 h at pH 4.7 was different from that of the parent compound indicating a different type of interaction with DNA. A DNA hybridisation sensor was also assembled using a thiolated/biotynilated 24-mer oligonucleotide immobilised on a gold screen-printed electrode and avidin-alkaline phosphatase conjugate. A voltammetric detection of naphtol was used to detect the hybridisation reaction. A net inhibition of the hybridisation reaction was observed after incubation with benzo(a)pyrene oxidation products that was attributed to the formation of stable adducts with the guanines of the biotinylated strand. LC-MS-MS studies of the oxidation products confirmed the presence of chemical species potentially forming adducts with DNA. The data reported demonstrate that DNA electrochemical sensors have the potential to be used to monitor remediation processes and to assess the potential toxicity vs. DNA of chemicals forming stable DNA adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号