首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging drug resistance is generating an urgent need for novel and effective antibiotics. A promising target that has not yet been addressed by approved antibiotics is the bacterial DNA gyrase subunit B (GyrB), and GyrB inhibitors could be effective against drug-resistant bacteria, such as methicillin-resistant S. aureus (MRSA). Here, we used the 4-hydroxy-2-quinolone fragment to search the Specs database of purchasable compounds for potential inhibitors of GyrB and identified AG-690/11765367, or f1, as a novel and potent inhibitor of the target protein (IC50: 1.21 µM). Structural modification was used to further identify two more potent GyrB inhibitors: f4 (IC50: 0.31 µM) and f14 (IC50: 0.28 µM). Additional experiments indicated that compound f1 is more potent than the others in terms of antibacterial activity against MRSA (MICs: 4–8 µg/mL), non-toxic to HUVEC and HepG2 (CC50: approximately 50 µM), and metabolically stable (t1/2: > 372.8 min for plasma; 24.5 min for liver microsomes). In summary, this study showed that the discovered N-quinazolinone-4-hydroxy-2-quinolone-3-carboxamides are novel GyrB-targeted antibacterial agents; compound f1 is promising for further development.  相似文献   

2.
随着MRSA的越发,万古霉素在临床上的使用越来越频繁,成为治疗MRSA的最后一道防线;然而,对万古霉素敏感性下降的金黄色葡萄球菌的出现,临床上抗感染治疗面临极大困难,引起了医学界普遍的关注。本文对万古霉素敏感性下降的金黄色葡萄球菌的发展,耐药状况,作用机制,相关治疗和热门争议话题等方面的研究进展作一综述。  相似文献   

3.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

4.
Twelve 4-benzoyl-1-dichlorobenzoylthiosemicarbazides have been tested as potential antibacterials. All the compounds had MICs between 0.49 and 15.63?µg/ml toward Micrococcus luteus, Bacillus cereus, Bacillus subtilis and Staphylococcus epidermidis indicating, in most cases, equipotent or even more effective action than cefuroxime. In order to clarify if the observed antibacterial effects are universal, further research were undertaken to test inhibitory potency of two most potent compounds 3 and 11 on clinical isolates of Staphylococcus aureus. Compound 11 inhibited the growth of methicillin-sensitive S. aureus (MSSA) at MICs of 1.95–7.81?µg/ml, methicillin-resistant S. aureus (MRSA) at MICs of 0.49–1.95?µg/ml and MDR–MRSA at MIC of 0.98 and 3.90?µg/ml, respectively. Finally, inhibitory efficacy of 3 and 11 on planktonic cells and biofilms formation in clinical isolates of S. aureus and Haemophilus parainfluenzae was tested. The majority of cells in biofilm populations of MSSA and MRSA were eradicated at low level of 3, with MBICs in the range of 7.82–15.63?µg/ml.  相似文献   

5.
葡萄球菌广泛分布于自然界中,如空气、土壤、水以及物体的表面,在人和动物的皮肤表面部、鼻咽、肠道也常可发现葡萄球菌。大部分葡萄球菌是非致病菌,少数可引起人或动物致病,金黄色葡萄球菌(Staphylococcus aureus,金葡菌)即为最主要的致病性葡萄球菌。金葡菌是一种革兰氏阳性球菌,是医院感染常见的病原体之一,同时也是引起食品污染和细菌性食物中毒的一种重要细菌,其产生的毒素可使人中毒,带来非常严重的公共卫生负担。本文拟对金葡菌的病原与病理学特性,金葡菌与食物中毒,抗生素滥用与金葡菌耐药性等方面做简要综述。  相似文献   

6.
葡萄球菌广泛分布于自然界中,如空气、土壤、水以及物体的表面,在人和动物的皮肤表面部、鼻咽、肠道也常可发现葡萄球菌.大部分葡萄球菌是非致病菌,少数可引起人或动物致病,金黄色葡萄球菌(Staphylococcus aureus,金葡菌)即为最主要的致病性葡萄球菌.金葡菌是一种革兰氏阳性球菌,是医院感染常见的病原体之一,同时也是引起食品污染和细菌性食物中毒的一种重要细菌,其产生的毒素可使人中毒,带来非常严重的公共卫生负担.本文拟对金葡菌的病原与病理学特性,金葡菌与食物中毒,抗生素滥用与金葡菌耐药性等方面做简要综述.  相似文献   

7.
8.
The in vitro antistaphylococcal activity of lactoferrin and the antibiotic resistance of clinical Staphylococcus aureus isolates obtained from three different sites of infection were examined. Antibiotic, but not lactoferrin resistance correlated with selective antibiotic pressure, and nosocomial and most community isolates were antibiotic resistant, whereas only a third of each group was resistant to lactoferrin. The antimicrobial activity of lactoferrin, both in defined medium and in normal human plasma serum, was dependent upon its ferrochelating properties. Therapeutic approaches based on the use of ferrochelating agents such as lactoferrin combined with antimicrobial drugs may help to counteract the reduced efficacy of current antibiotics.  相似文献   

9.
A novel benzylidenethiazolidinedione has been discovered with antimicrobial activity. Here, we present the results of a structure-activity study on this compound with respect to its antimicrobial activity.  相似文献   

10.
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.  相似文献   

11.
12.
Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline’s antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA—the enzyme that catalyzes the first step of peptidoglycan biosynthesis—over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480?μM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.  相似文献   

13.
Recent research has suggested that Staphylococcus epidermidis is a reservoir of genes that, after horizontal transfer, facilitate the potential of Staphylococcus aureus to colonize, survive during infection, or resist antibiotic treatment, traits that are notably manifest in methicillin‐resistant S. aureus (MRSA). S. aureus is a dangerous human pathogen and notorious for acquiring antibiotic resistance. MRSA in particular is one of the most frequent causes of morbidity and death in hospitalized patients. S. aureus is an extremely versatile pathogen with a multitude of mechanisms to cause disease and circumvent immune defenses. In contrast, most other staphylococci, such as S. epidermidis, are commonly benign commensals and only occasionally cause disease. Recent findings highlight the key importance of efforts to better understand how genes of staphylococci other than S. aureus contribute to survival in the human host, how they are transferred to S. aureus, and why this exchange appears to be uni‐directional.  相似文献   

14.
This study was conducted to investigate the bactericidal effects of visible light on methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MRSA), and subsequently identify the wavelength sensitivity of S. aureus, in order to establish the wavelengths inducing maximum inactivation. Staphylococcus aureus, including MRSA strains, were shown to be inactivated by exposure to high-intensity visible light, and, more specifically, through a series of studies using a xenon broadband white-light source in conjunction with a selection of optical filters, it was found that inactivation of S. aureus occurs upon exposure to blue light of wavelengths between 400 and 420 nm, with maximum inactivation occurring at 405+/-5 nm. This visible-light inactivation was achieved without the addition of exogenous photosensitisers. The significant safety benefit of these blue-light wavelengths over UV light, in addition to their ability to inactivate medically important microorganisms such as MRSA, emphasises the potential of exploiting these non-UV wavelengths for disinfection applications.  相似文献   

15.
The acrosome of marsupial spermatozoa is a robust structure which, unlike its placental counterpart, resists disruption by detergent or freeze/thawing and does not undergo a calcium ionophore induced acrosome reaction. In this study specific fluorescent thiol labels, bromobimanes, were used to detect reactive thiols in the intact marsupial spermatozoon and examine whether disulfides play a role in the stability of the acrosome. Ejaculated brushtail possum (Trichosurus vulpecula) and tammar wallaby (Macropus eugenii) spermatozoa were washed by swim up and incubated with or without dithiothreitol (DTT) in order to reduce disulfides to reactive thiols. Spermatozoa were then washed by centrifugation and treated with monobromobimane (mBBr), a membranepermeable bromobimane, or with monobromotrimethylammoniobimane (qBBr), a membrane-impermeable bromobimane. Labelled spermatozoa were examined by fluorescence microscopy and sperm proteins (whole sperm proteins and basic nuclear proteins) were analysed by gel electrophoresis. The membrane-permeable agent mBBr lightly labelled the perimeter of the acrosome of non-DTT-treated possum and wallaby spermatozoa, indicating the presence of peri-acrosomal thiol groups. After reduction of sperm disulfides by DTT, mBBr labelled the entire acrosome of both species. The membrane-impermeable agent qBBr did not label any part of the acrosome in non-DTT or DTT-treated wallaby or possum spermatozoa. Thiols and disulfides are thus associated with the marsupial acrosome. They are not found on the overlying plasma membrane but are either in the acrosomal membranes and/or matrix. The sperm midpiece and tail were labelled by mBBr, with increased fluorescence observed in DTT-treated spermatozoa. The nucleus was not labelled in non-DTT or DTT-treated spermatozoa. Electrophoretic analysis confirmed the microscopic observations: Basic nuclear protein (protamines) lacked thiols or disulfide groups. Based on these findings, the stability of the marsupial acrosome may be due in part to disulfide stabilization of the acrosomal membranes and/or acrosomal matrix. In common with placental mammals, thiol and disulfide containing proteins appear to play a role in the stability of sperm tail structures. It was confirmed that the fragile marsupial sperm nucleus lacked thiols and disulfides. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The complexes (cnt)2[Fe(nta)Cl2], where nta = nitrilotriacetate and cnt = Et4N+ or PyH+, catalyze the air oxidation of thiols to disulfides under ambient conditions. Dithiols are converted to linear and cyclic oligomers that differ in their terminal groups as a function of the counterion, cnt. Cysteine ethyl ester was converted to the corresponding cystine diethylester in high yield.  相似文献   

17.
Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA–DHDPR exhibits a unique nucleotide specificity utilizing NADPH (Km = 12 μM) as a cofactor more effectively than NADH (Km = 26 μM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA–DHDPR has ∼20-fold greater binding affinity for NADPH (Kd = 1.5 μM) relative to NADH (Kd = 29 μM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP+. This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA–DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.  相似文献   

18.
Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multidrug-resistant strains of infectious bacteria. Several 1-phenylbenzo[c]phenanthridines exhibit notable antibacterial activity. Based upon their structural similarity to these compounds, a distinct series of substituted 1,6-diphenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. In addition, the effect of select 1,6-diphenylnaphthalenes on the polymerization dynamics of S. aureus FtsZ and mammalian β-tubulin was also assessed. The presence of a basic functional group or a quaternary ammonium substituent on the 6-phenylnaphthalene was required for significant antibacterial activity. Diphenylnaphthalene derivatives that were active as antibiotics, did exert a pronounced effect on bacterial FtsZ polymerization and do not appear to cross-react with mammalian tubulin to any significant degree.  相似文献   

19.
20.
Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号