首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biological activities of a series of fluorescent compounds against human lung cancer cell line A549 were investigated. The results showed that (E)-1,3,3-trimethyl-2-(4-(piperidin-1-yl)styryl)-3H-indol-1-ium iodide (8) and (E)-2-(5,5-dimethyl-3-(4-(piperazin-1-yl)styryl)cyclohex-2-en-1-ylidene) malononitrile (11) could inhibit the growth of A549 cancer cells in a dose and time-dependent manner. Furthermore, compound 8 could trigger autophagy and apoptosis, but not obviously induce necrosis under the stimulatory condition. Therefore, 8 can be used as autophagy activator to investigate the regulatory mechanism of autophagy and may offer a new candidate for the treatment of lung cancer.  相似文献   

2.
Five flavones, including four flavonoids and one prenylated chalcone (paratocarpin E), were isolated from E. humifusa. and their chemical structures were established by spectroscopic analyses. We assessed the efficacy of these compounds against the growth of human breast cancer, leukemic, kidney cancer cell lines. Among them, paratocarpin E showed significant cytotoxicity against these cancer cell lines with an IC50 of 19.6 μM on the growth of MCF-7 cells. Paratocarpin E treatment of MCF-7 cells resulted in typical apoptotic features via increasing expression of activated caspase-8 and -9 and PARP cleavage. Moreover, paratocarpin E altered the expression of Bax and Bcl-2, leading to the release of cytochrome c from the mitochondria into the cytosol, suggesting that the mitochondria-mediated apoptosis was initiated. In addition, paratocarpin E increased the MDC-positive autophagic vacuoles, the ratio of LC3-II/LC3-I protein levels of Beclin-1, but decreased p62 expression, indicating the potent pro-autophagic effects of paratocarpin E in MCF-7 cells. Mechanistically, cell death induced by paratocarpin E is able to induce apoptosis of MCF-7 cells by activating p38 and JNK signaling pathway while inhibiting Erk pathway. Furthermore, paratocarpin E promotes the activation and nuclear translocation of NF-κB, which plays an important role in balancing paratocarpin E-mediated apoptosis and autophagy. The molecular docking study also revealed that paratocarpin E bound to Fas and NF-κB complex. These findings provide initial evidences that paratocarpin E can be used as a potential anti-cancer drug in future for breast cancer therapy.  相似文献   

3.
A series of novel 3-aryl-1-arylmethyl-1H-pyrazole-5-carboxamide derivatives 3al, were synthesized by the reaction of 3-aryl-1-arylmethyl-1H-pyrazole-5-carbonyl chloride with substituted amine in excellent yields. The compounds 3eh could suppress A549 lung cancer cell growth. More interestingly, compounds 3e and 3f might inhibit the A549 cell growth by inducing apoptosis; whereas compounds 3g and 3h with fluorine group might inhibit the A549 cell growth by inducing autophagy.  相似文献   

4.
《Phytomedicine》2014,21(7):970-977
Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.  相似文献   

5.
Celastrus paniculatus is a traditional medicinal plant with diverse pharmacological activities. To identify its bioactive constituents, three new β-dihydroagarofuranoid sesquiterpenes were isolated from the whole plant, of which the major constituent is (1α,2α,8β,9β)-1,8-bis(acetyloxy)-2,9-bis(benzoyloxy)-14-hydroxy-β-dihydroagarofuran. It was assessed for its antiproliferative activity, and it suppressed the viability of MCF-7 breast cancer cells with an IC50 of 17 ± 1 μM. This growth inhibition was, in part, attributable to apoptosis. Moreover, this drug treatment led to LC3B-II accumulation, indicative of autophagy. Western blot analysis established its ability to target a broad range of signaling effectors related to survival and cell cycle progression, including Akt, NF-κB, p53, and MAP kinases. In addition, flow cytometry analysis indicates increased reactive oxygen species production in response to this compound. Taken together, these findings suggest a pleiotropic mode of mechanism that underlies the antiproliferative activity of this compound in MCF-7 breast cancer cells.  相似文献   

6.
Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.  相似文献   

7.
Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and the occurrence of drug-resistance severely limits the efficacy of anticancer drugs in the treatment of NSCLC. Identification of new agents to reverse drug-resistance in NSCLC treatment is of great importance and urgency both clinically and scientifically. In the present study, we found that A549/Taxol cells displayed a high level of resistance to paclitaxel with the resistance index up to 231. Importantly, esomeprazole could potentiate the antiproliferative effect of paclitaxel in A549/Taxol cells, but not in A549 cells. Further exploration on the underlying mechanisms revealed that esomeprazole decreased the intracellular pH via inhibiting V-ATPase expression in A549/Taxol cells. Meanwhile, esomeprazole pretreatment significantly promoted paclitaxel-induced polymerization of tubulin and enhanced the proportion of G2/M-arrested cells in A549/Taxol cells. Unfortunately, esomeprazole could only result in a slight decrease in the expression of P-gp in A549/Taxol cells. Interestingly, esomeprazole significantly increased paclitaxel-induced apoptosis, which was impeded by the autophagy inhibitor 3-MA in A549/Taxol cells. Taken together, our data suggest that esomeprazole is a promising chemosensitizer against paclitaxel-resistant NSCLC by inducing autophagy. Our study also offers a new strategy to solve the paclitaxel-resistance problem during NSCLC treatment.  相似文献   

8.
Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis. [BMB Reports 2014; 47(12): 697-702]  相似文献   

9.
Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.  相似文献   

10.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

11.
Many studies have demonstrated that histone deacetylase (HDAC) inhibitors induce various tumor cells to undergo apoptosis, and such inhibitors have been used in different clinical trials against different human cancers. In this study, we designed and synthesized a novel HDAC inhibitor, Chidamide. We showed that Chidamide was able to increase the acetylation levels of histone H3 and to inhibit the PI3K/Akt and MAPK/Ras signaling pathways, which resulted in arresting colon cancer cells at the G1 phase of the cell cycle and promoting apoptosis. As a result, the proliferation of colon cancer cells was suppressed in vitro. Our data support the potential application of Chidamide as an anticancer agent in treating colon cancer. Future studies are needed to demonstrate its in vivo efficacy.  相似文献   

12.
Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA–MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1α). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors.  相似文献   

13.
BackgroundCisplatin is a prevalent chemotherapeutic agent, and it has been used extensively to treat lung cancer. However, its clinical efficacy is hampered by its safety profile and dose-limiting toxicity. Saffron is a natural product that has shown significant anticancer effects. The combination treatment of saffron with chemotherapeutic agents has been considered a new strategy.MethodsHerein, saffron extract as a natural anticancer substance was combined with cisplatin to assess their combined efficacy against tumor development in vitro. In A549 and QU-DB cell lines, the combined effect of the saffron extract with cisplatin led to a significant reduction in cell viability as compared to cisplatin alone.ResultsAfter 48 h incubation a considerable reduction in ROS levels in the QU-DB cell line upon treatment with cisplatin in the presence of saffron extract in comparison with cells treated with cisplatin alone. Furthermore, apoptosis increased significantly when in cells treated with cisplatin in combination with saffron extract compared to cisplatin alone.ConclusionOur data establish that the combination of saffron extract as a natural anticancer substance with cisplatin leads to improved cell toxicity of cisplatin as an anticancer agent. Therefore, the saffron extract could be potentially used as an additive to enable a reduction in cisplatin dosages and its side effects.  相似文献   

14.
Inclusion of chemotherapeutic drugs in treatment of patients with newly diagnosed head and neck cancer has improved response rates and prolonged median survival. Nevertheless, most patients with advanced head and neck cancer are destined to relapse and to develop resistance to initially used drugs such as paclitaxel. Consequently, it has been more important in cancer therapy to determine the molecular mechanisms that are related to cell-killing effects of anti-cancer agents or cancer resistance against them. Consequently, we examined whether abrogation of histone deacetylase 3 (HDAC3) expression by anti-sense oligonucleotides (ASOs) potentiates the efficacy of paclitaxel in human maxillary cancer IMC-3 cells. Here, we showed that paclitaxel-induced apoptosis was enhanced significantly by addition of ASOs for HDAC3 in cultured cells. Furthermore, paclitaxel-induced apoptosis in IMC-3 tumors transplanted in nude mice was enhanced significantly by administration of ASOs for HDAC3, thereby suppressing tumor growth. We provide new evidence that HDAC3 is a novel molecular target whose inactivation can potentiate the efficacy of anti-cancer drugs disrupting microtubules such as paclitaxel.  相似文献   

15.
The gene PNAS4 is a high conservative gene that shares high homology of sequence in various organisms from plants to animals. We found overexpression of human PNAS4 induced apoptosis and arrested cell cycle in S phase in A549 human lung adenocarcinoma cells. In C57BL/6 mice model of Lewis lung carcinoma, overexpression of mouse PNAS4 significantly suppressed tumor growth and prolonged survival time through induction of tumor cell apoptosis, exhibiting effective antitumor. Our original investigations in vitro and vivo indicated PNAS4 is a novel pro-apoptosis gene, which could be used as a potential target of cancer biotherapy in future.  相似文献   

16.
Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.  相似文献   

17.
Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-kappaB was up-regulated. Interference analysis of NF-kappaB in A549 cells showed that knock down of NF-kappaB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-kappaB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.  相似文献   

18.
We found that the deoxypodophyllotoxin derivative, 2,6-dimethoxy-4-(6-oxo-(5R,5aR,6,8,8aR,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)phenyl ((R)-1-amino-4-(methylthio)-1-oxobutan-2-yl)carbamate (DPMA), exhibited superior cytotoxicity compared with etoposide. In this study, we investigated the mechanism of action of DPMA. DPMA exhibited anti-proliferative activity and induced apoptosis in A549 cells in a dose- and time-dependant manner. DPMA inhibited microtubule formation and induced expression of Bax, cleaved caspase-3, p53 and ROS, and inhibited Bcl-2 expression. DPMA also affected cyclinB1, cdc2 and p-cdc2 expression, inducing cell cycle arrest. DPMA also inhibited tube formation of VEGF-induced human umbilical vein endothelial cells. These studies demonstrate that DPMA inhibits p53/cdc2/Bax signaling, thereby inhibiting cell growth/angiogenesis and inducing apoptosis.  相似文献   

19.
Hsu YL  Kuo PL  Lin CC 《Life sciences》2004,75(19):2303-2316
Ursolic acid (UA) is a pentacyclic triterpene compound isolated from many types of medicinal plants and is present in human diet. It has been reported to possess a wide range of pharmacological properties, and is one of the most promising chemopreventive agents for cancer. Here, we report that UA inhibits the cell proliferation of human lung cancer cell line A549 and provide a molecular understanding of this effect. The results showed that UA blocked cell cycle progression in the G1 phase that was associated with a marked decrease in the protein expression of cyclin D1, D2, and E and their activating partner cdk2, 4, and 6 with concomitant induction of p21/WAF1. This accumulation of p21/WAF1 might be through a p53-dependent manner. Further, UA treatment also resulted in the triggering of apoptosis as determined by DNA fragmentation assay. This effect was found to correlate with the up-regulation of Fas/APO-1, Fas ligand, and Bax, and down-regulation of NF-kappaB, Bcl-2, and Bcl-XL. Taken together, our study indicated that UA might be a potential chemopreventive agent for lung cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号