首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of six novel and six known thieno[2,3-d]pyrimidin-4-amines 213 were synthesized, and further were used as a starting material for preparation of a small series of eight novel thieno[2,3-d]pyrimidin-4-phthalimides 1421. Eight compounds, five amine and three phthalimide derivatives, inhibited bovine pancreatic DNase I with an IC50 below 200 µM, being more effective than referent inhibitor crystal violet. Phthalimide derivatives 16, 18 and 19 exhibited higher DNase I inhibitory activity compared to their amine precursors 7, 10 and 11. Compound 19, as the most potent (IC50 = 106 ± 16 µM), offers a good starting point for a design of new DNase I inhibitors. The Pharma RQSAR model showed a significant enhancement of thieno[2,3-d]pyrimidines activity using aryl substituents at R1 position. The E-State RQSAR model clarified the most important structural fragments relevant for DNase I inhibition. Molecular docking and Site Finder module defined the thieno[2,3-d]pyrimidines interactions with the most important catalytic residues of DNase I, including Glu 39, His 134, Asp 168 and His 252. We also found that steric effects and increase of molecular volume play a vital role in DNase I inhibition.  相似文献   

2.
Some derivatives containing pyrido[2,3-d:6,5d′]dipyrimidine-4,5-diones (9a-f), tetrahydropyrido[2,3-d]pyrimidine-6-carbonitriles (11a-c) and 6-(4-acetylphenyl)-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrimido[4,5-d]pyrimidin-4-one (12) were synthesized from 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (8). The anti-inflammatory effect of these candidates was determined and the ulcer indices were calculated for active compounds. 7-Amino-5-(3,4,5-trimethoxyphenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido[2,3-d] pyrimidine-6-carbonitrile (11c) exhibited better edema inhibition than celecoxib. Moreover, compounds 9b, 9d and 11c revealed better COX-2 inhibitory activity in a range (IC50 = 0.25–0.89 µM) than celecoxib (IC50 = 1.11 µM). Regarding ulcerogenic liability, all of the compounds under the study were less ulcerogenic than indomethacin. Molecular docking studies had been carried on active candidates 9d and 11c to explore action mode of these candidates as leads for discovering other anti-inflammatory agents.  相似文献   

3.
Herein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC50 values of 0.004 μM and 0.001 μM against ROCK Ⅰ and ROCK Ⅱ, respectively. In vitro, 8k significantly reduced the phosphorylation level of ROCK downstream signaling protein and induce changes in cell morphology and migration. Overall, this study provides a promising lead compound for drug discovery targeting ROCKs.  相似文献   

4.
Different series of novel thieno [2,3-d]pyrimidine derivative (9a-d,10a-f,l,m and 15a-m) were designed, synthesized and evaluated for their ability to in vitro inhibit VEGFR-2 enzyme. Also, the cytotoxicity of the final compounds was tested against a panel of 60 different human cancer cell lines by NCI. The VEGFR-2 enzyme inhibitory results revealed that compounds 10d, 15d and 15 g are among the most active inhibitors with IC50 values of 2.5, 5.48 and 2.27 µM respectively, while compound 10a remarkably showed the highest cell growth inhibition with mean growth inhibition (GI) percent of 31.57%. It exhibited broad spectrum anti-proliferative activity against several NCI cell lines specifically on human breast cancer (T7-47D) and renal cancer (A498) cell lines of 85.5% and 77.65% inhibition respectively. To investigate the mechanistic aspects underlying the activity, further biological studies like flow cytometry cell cycle together with caspase-3 colorimetric assays were carried on compound 10a. Flow cytometric analysis on both MCV-7 and PC-3 cancer cells revealed that it induced cell-cycle arrest in the G0-G1phase and reinforced apoptosis via activation of caspase-3. Furthermore, molecular modeling studies have been carried out to gain further understanding of the binding mode in the active site of VEGFR-2 enzyme and predict pharmacokinetic properties of all the synthesized inhibitors.  相似文献   

5.
The key intermediate 3-aminopyrazolo[4,3-c]pyridine-4,6-dione (2) is considered as a precursor for some novel pyrazolo[4,3-c]pyridines 4a-c, arylhydrazopyrazolo[4,3-c]pyridines 8a-e, pyrazolo[4,5,1-ij][1,6]naphthyridines 11a-e and pyrido[4′,3′:3,4]pyrazolo[1,5-a]-pyrimidines 15a-d through Knovenegal condensation, coupling reaction and Michael addition. Some of the newly synthesized pyrazolo[4,3-c]pyridine derivatives were investigated for anticancer activity. The results of the cytotoxic activity revealed that compound 6b was the most active compound against the breast and liver carcinoma cell lines which gives IC50 values of 1.937 and 3.695 µg/mL, respectively compared to reference drug (doxorubicin) with IC50 values of 2.527 and 4.749 µg/ml, respectively. Moreover, compound 6c was potent compound against the colon carcinoma cell line which gives the value of IC50 = 2.914 µg/ml compared to doxorubicin with IC50 value of 3.641 µg/ml. Some selected of the novel synthesized compounds were docked inside the active site of ERK2 enzyme and were found display a suitable binding with the active site amino acids according to their bond lengths, angles and conformational energy.  相似文献   

6.
Reaction of 5-morphilinosulfonylisatin (1) with acetophenones (2a–e) afforded 3-hydroxy-3-substituted-2-oxoindoles 3a-e, when treated with acetic acid the expected 3-phenacylidene-2-oxoindoles 4a-d and 4-hydroxy-5′-(morpholinosulfonyl) spiro [chromene-2, 3′-indolin]-2′-one 6 were obtained. Isatin derivative (1) was stirred with cyano derivatives to produce the arylidines (7a-c), while under reflux condition, it gave pyrrolo[2,3–b]indoles (8, 9). Moreover, istain (1) reacted with pyrazolo-5-one or 3-substituted phenol in presence of malononitrile to afford spiroxindole derivatives (10a,b) and (11a,b). Also, compounds (10a,b) and (11a,b) were obtained through cyclization of (7a) with pyrazolo-5-one or 3-substituted phenol. The obtained compounds were identified by IR, 1H NMR, 13C NMR and elemental analysis. Anticancer activity against three cancer cell lines (HepG-2, HCT-116 and MCF-7) were evaluated using sulforhodamine B assay method. Compounds 4b, 4c, 7a, 7c and 9 showed broad spectrum anticancer activity on the three tested cell lines with IC50 values less than 10 µM. Cell cycle analysis was performed for the most promising derivatives, compounds 4b and 7c arrested HepG-2 cells at G2-M phase, while compounds 7a and 9 accumulated cells at G0-G1 phase, all of them induced apoptosis at priG1 phase in the range of (11.32–19.17%). Additionally compounds 4b, 7a and 9 showed more potent activity against EGFR than Lapatinib, their IC50 values are from 0.019 to 0.026 µM while IC50 of Lapatinib is 0.028 µM. Molecular docking studies were conducted to investigate the binding mode, amino acid interactions and free binding energy of these potent derivatives.  相似文献   

7.
New series of furan–thiazole hybrids (3a-f), thiazolo[2,3-c]-1,2,4-triazines (4a-f), their bioisosteres 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazines (8a-d) and 1,2,4-triazino[4,3-b]-1,2,4-triazines (13a-e) were designed, synthesized and evaluated for their in vitro antitumor activities at the National Cancer Institute (NCI, USA). Among the synthesized compounds, 3d was found to exhibit promising broad spectrum antitumor activity (GI50 MG-MID = 14.22 µM) in a five-dose assay against the full panel NCI-cancer cell lines. 3d displayed higher antitumor activity against most tested cancer cell lines than 5-FU as reference. COMPARE analysis and molecular electrostatic potential computational study revealed that 3d probably exerts its antitumor properties through DNA binding similar to Clomesone. Further DNA binding studies using fluorescent terbium (Tb+3) probe revealed increased fluroresence of DNA-3d-Tb+3 mixture due to damage of the double-stranded DNA. Also, UV–vis absorption study was conducted which showed hyperchromic shift in DNA absorption confirming 3d-induced DNA damage. The assessed potency of 3d-induced DNA damage of calf thymus DNA showed a concentration as low as 2.04 ng/mL for a detectable DNA damage. Moreover, in silico calculation of physicochemical properties and druglikeness were in compliance to Lipinski’s rule.  相似文献   

8.
Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cell. In AML, a mutation in FLT3 is commonly occurs and is associated with poor prognosis. We have previously reported that thieno[2,3-d]pyrimidine derivative compound 1 exhibited better antiproliferative activity against MV4-11 cells which harbor mutant FLT3 than AC220, which is a well-known FLT3 inhibitor, and has good microsomal stability. However, compound 1 had poor solubility. We then carried out further structural modification at the C2 and the C6 positions of thieno[2,3-d]pyrimidine scaffold. Compound 13b, which possesses a thiazole moiety at the C2 position, exhibited better antiproliferative activity than compound 1 and showed increased solubility and moderate microsomal stability. These results indicate that compound 13b could be a promising potential FLT inhibitor for AML chemotherapy.  相似文献   

9.
Structural similarity search of commercially available analogues of thieno[2,3-b]pyridine and 1H-pyrazole derivatives, known anticancer agents, resulted in 717 hits. These were docked into the phosphoinositide specific-phospholipase C (PLC) binding pocket, the putative target of the compounds, to further focus the selection. Thirteen derivatives of the thieno[2,3-b]pyridines were identified and tested against the NCI60 panel of human tumour cell lines. The most active derivative 1 was most potent against the MDA-MB-435 melanoma cell line with GI50 at 30 nM. Also, it was found that a piperidine moiety is tolerated on the thieno[2,3-b]pyridine scaffold with GI50 = 296 nM (MDA-MB-435) for derivative 10 considerably expanding the structure activity relationship for the series. For the 1H-pyrazoles four derivatives were identified using the in silico approach and additionally ten were synthesised with various substituents on the phenyl moiety to extend the structural activity relationship but only modest anticancer activity was found.  相似文献   

10.
Synthesis of a new series of diarylureas and amides having pyrrolo[2,3-d]pyrimidine scaffold is described. Their in vitro antiproliferative activities against A375 human melanoma cell line and HS 27 fibroblast cell line were tested and the effect of substituents on pyrrolo[2,3-d]pyrimidine was investigated. The newly synthesized compounds, except N-acetyl derivatives (Id, Ie, and Im), generally showed superior or similar activity against A375 to Sorafenib. Among all of these derivatives, compounds Iq and Ir having imidazole and morpholine moieties, respectively, showed the most potent antiproliferative activity against A375.  相似文献   

11.
Novel β-enaminonitrile/ester compounds (4, 6) and an imidate of 4 (9) were utilized as key scaffolds for the synthesis of newly 2-substituted 4H-benzo[h]chromene (7, 8, 10, 11, 13, 14) and 7H-benzo[h]chromeno[2,3–d]pyrimidine derivatives (1519). The spectral data confirmed the successful isolation of the desired compounds. The targeted compounds were assessed for their in vitro anticancer activity against mammary gland breast cancer cell line (MCF-7), human colon cancer (HCT-116), and liver cancer (HepG-2), while doxorubicin, vinblastine, and colchicine were utilized as standard references drugs. Some of the examined compounds displayed high growth inhibitory activity against the three different cell lines. For example, the aminoimino derivative (18) exhibited excellent antitumor activity versus all cancer cell lines with IC50 values = 0.45 µg/mL, 0.7 µg/mL, and 1.7 µg/mL. Among the tested molecules, compounds 9, 15, and 18 were selected for further study regarding their effects on cell cycle analysis, apoptosis assay, caspase 3/7 activity, and DNA fragmentation. We found that these three potent cytotoxic compounds induce cell cycle arrest at the S and G2/M phases, which causes apoptosis. Furthermore, these compounds significantly inhibit the invasion and migration of the different tested cancer cells. Finally, the SAR survey highlighted the antitumor activity of the new molecules that was remarkably influenced by the hydrophilicity of substituent as well the fused rings at certain positions.  相似文献   

12.
To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 and 1.4 Å, respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5 Å) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 213 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8–C9 unsaturated compounds 27 and catalytic reduction gave the saturated 813. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-β were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs.  相似文献   

13.
Inspired by marine compounds the derivatization of the natural pyrrolo[2,3-d]pyrimidine lead scaffold led to a series of novel compounds targeting the histamine H3 receptor. The focus was set on improved binding towards the receptor and to establish an initial structure-activity relationship for this compound class based on the lead structure (compound V, Ki value of 126 nM). As highest binding affinities were found with 1,4-bipiperidines as basic part of the ligands, further optimization was focused on 4-([1,4′-bipiperidin]-1′-yl)-pyrrolo[2,3-d]pyrimidines. Related pyrrolo[2,3-d]pyrimidines that were isolated from marine sponges like 4-amino-5-bromopyrrolo[2,3-d]pyrimidine (compound III), showed variations in halogenation pattern, though in a next step the impact of halogenation at 2-position was evaluated. The chloro variations did not improve the affinity compared to the dehalogenated compounds. However, the simultaneous introduction of lipophilic cores with electron-withdrawing substitution patterns in 7-position and dehalogenation at 2-position (11b, 12b) resulted in compounds with significantly higher binding affinities (Ki values of 7 nM and 6 nM, respectively) than the initial lead structure compound V. The presented structures allow for a reasonable structure-activity relationship of pyrrolo[2,3-d]pyrimidines as histamine H3 receptor ligands and yielded novel lead structures within the natural compound library against this target.  相似文献   

14.
Two new series of 5-subtituted and 5,6-disubstituted pyrrolo[2,3-d]pyrimidine octamides (4ao and 6ag) and their corresponding free amines 5am and 7ag have been synthesized and biologically evaluated for their antiproliferative activity against three human cancer cell lines. The 5,6-disubstituted octamides 6dg as well as the amine derivative 7b have shown the best anticancer activity with single digit micromolar GI50 values over the tested cancer cells, and low cytotoxic effects (GI50?>?10.0?µM) against HFF-1 normal cell. A structure activity relationship (SAR) study has been established and disclosed that terminal octamide moiety at C2 as well as disubstitution with fluorobenzyl piperazines at C5 and C6 of pyrrolo[2,3-d]pyrimidine are the key structural features prerequisite for best antiproliferative activity. Moreover, the most active member 6f was tested for its antiproliferative activity over a panel of 60 cancer cell lines at NCI, and exhibited distinct broad spectrum anticancer activity with submicromolar GI50 and TGI values over multiple cancer cells. Kinase profile of compound 6f over 53 oncogenic kinases at 10?µM concentration showed its highly selective inhibitory activity towards FGFR4, Tie2 and TrkA kinases. The observed activity of 6f against TrkA (IC50?=?2.25?µM), FGFR4 (IC50?=?6.71?µM) and Tie2 (IC50?=?6.84?µM) was explained by molecular docking study, which also proposed that 6f may be a type III kinase inhibitor, binding to an allosteric site rather than kinase hinge region. Overall, compound 6f may serve as a promising anticancer lead compound that could be further optimized for development of potent anticancer agents.  相似文献   

15.
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.  相似文献   

16.
A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 616 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R1, R2, and R3). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50 = 420 nM) and 9 (IC50 = 930 nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.  相似文献   

17.
A series of pyrazolo[3,4-b]thieno[2,3-d]pyridine alkanoic acid derivatives has been synthesized and evaluated as thromboxane synthetase inhibitors and leukotriene D4 receptor antagonists. The glutaric acid derivative LASSBio341 (6) was shown to be active in arachidonic acid-induced platelet aggregation (IC50=0.14 μM) and inhibition of the contraction of guinea pig tracheal strip induced with LTD4 (IC50=43.7 μM), displaying still in vivo anti-inflammatory profile.  相似文献   

18.
Four series of novel thieno[3,2-d]pyrimidine and quinazoline derivatives containing N-acylhydrazone or semicarbazone were designed, synthesized, and evaluated for their biological activity. Of which compound 14 showed the most potent antitumor activities with IC50 values of 1.78 μM, 1.02 μM, 1.98 μM, 0.41 μM and 0.22 μM against HT-29, MDA-MB-231, U87MG, PC-3 and HCT-116 cell lines respectively. Inhibition of enzymatic assays showed that PI3Kα was very likely to be one of the drug targets of 14 with the IC50 value of 0.20 μM. According to the results of antitumor activity, the SARs were summarized, which indicated that thieno[3,2-d]pyrimidine and semicarbazone are optimal fragments. In addition, compounds with hydroxyl group at the 4-position on the terminal phenyl ring were more active. Annexin-V and propidium iodide (PI) double staining confirmed that the most active cytotoxic compound 14 can induce cell apoptosis in HCT-116 cells. Moreover, the influence of 14 on the cell cycle distribution was assessed on the HCT-116 cell line, exhibiting a cell cycle arrest at the G2/M phase. Furthermore, molecular docking analysis was also performed to determine possible binding modes between PI3Kα and the target compound. These results will guide us to further refine the structure of the thieno[3,2-d]pyrimidine and quinazoline derivatives to achieve optimal antitumor activity.  相似文献   

19.
Thirty three derivatives of 2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine analogues were synthesized by molecular modification of a reported antimycobacterial molecule (GSK163574A). Compounds were evaluated in vitro against actively replicative and nutrient starved non-replicative Mycobacterium tuberculosis (MTB), enzymatic screening and cytotoxicity against RAW 264.7 cell line. Among the compounds, 2-ethyl-N-phenethyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (5c) was found to be the most active compound against non-replicative MTB with 2.7 log reduction of bacteria at 10 μg/mL and was more potent than isoniazid (1.2 log reduction) and rifampicin (2.0 log reduction) at same dose level. Compound 5c also showed activity against MTB alanine dehydrogenase enzyme with IC50 of 1.82 ± 0.42 μM and showed 25% cytotoxicity against RAW 264.7 cell line at 50 μg/mL.  相似文献   

20.
Four series of pyridothienopyrimidin-4-one derivatives were designed and prepared to improve the pim-1 inhibitory activity of the previously reported thieno[2,3-b]pyridines. Significant improvement in the pim-1 inhibition and cytotoxic activity was achieved using structure rigidification strategy via ring closure. Six compounds (6c, 7a, 7c, 7d, 8b and 9) showed highly potent pim-1 inhibitory activity with IC50 of 4.62, 1.18, 1.38, 1.97, 8.83 and 4.18?μM, respectively. Four other compounds (6b, 6d, 7b and 8a) showed moderate pim-1 inhibition. The most active compounds were tested for their cytotoxic activity on three cell lines [MCF7, HCT116 and PC3]. Compounds 7a [the 2-(2-chlorophenyl)-2,3-dihydro derivative] and 7d [the 2-(2-(trifluoromethyl)-phenyl)-2,3-dihydro derivative] displayed the most potent cytotoxic effect on the three cell lines tested consistent with their highest estimated pim-1 IC50 values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号