首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis Signal-Regulating Kinase-1 (ASK1) is a known member of the Mitogen-Activated Protein Kinase Kinase Kinase (MAP3K) family and upon stimulation will activate the p38- and JNK-pathways leading to cardiac apoptosis, fibrosis, and hypertrophy. Using Structure-Based Drug Design (SBDD) in parallel with deconstruction of a published compound, a novel series of ASK1 inhibitors was optimized, which incorporated a saturated heterocycle proximal to the hinge-binding motif. This yielded a unique chemical series with excellent selectivity across the broader kinome, and desirable drug-like properties. The lead compound (10) is highly soluble and permeable, and exhibits a cellular EC50 = 24 nM and Kd < 1 nM. Of the 350 kinases tested, 10 has an IC50 ≤ 500 nM for only eight of them. This paper will describe the design hypotheses behind this series, key data points during the optimization phase, as well as a possible structural rationale for the kinome selectivity. Based on crystallographic data, the presence of an aliphatic cycle adjacent to the hinge-binder in the active site of the protein kinase showed up in <1% of the >5000 structures in the Protein Data Bank, potentially conferring the selectivity seen in this series.  相似文献   

2.
A series of 1-aryl-3,4-dihydroisoquinoline inhibitors of JNK3 are described. Compounds 20 and 24 are the most potent inhibitors (pIC50 7.3 and 6.9, respectively in a radiometric filter binding assay), with 10- and 1000-fold selectivity over JNK2 and JNK1, respectively, and selectivity within the wider mitogen-activated protein kinase (MAPK) family against p38α and ERK2. X-ray crystallography of 16 reveals a highly unusual binding mode where an H-bond acceptor interaction with the hinge region is made by a chloro substituent.  相似文献   

3.
ABSTRACT

Introduction: Apoptosis signal-regulating kinase 1 (ASK1), also known as MAP3K5, is a member of mitogen-activated protein kinase kinase kinase (MAP3K) family and is well reported as crucial in the regulation of the JNK and P38 pathways. ASK1 is activated in response to a diverse array of stresses such as endoplasmic reticulum stress, lipopolysaccharides, tumor necrosis factor alpha, and reactive oxygen species. The activation of ASK1 induces various stress responses.

Areas covered: Considering ASK1 as an important therapeutic drug target, here we have discussed the role of ASK1 in the progression of various diseases. We have also provided an overview of the available inhibitors for ASK1. The success of computational-based approaches toward ASK1 inhibitor design has also been discussed.

Expert opinion: A number of reports have outlined the prominent role of ASK1 in the pathogenesis of several diseases. The discovery of novel ASK1 inhibitors would have a wide range of applications in medical science. In-silico techniques have been successfully used in the design of some novel ASK1 inhibitors. The use of machine learning-based approaches in combination with structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS) will be helpful toward the development of potent ASK1 inhibitors.  相似文献   

4.
A novel series of AKT inhibitors containing 2,3,5-trisubstituted pyridines with novel azaindazoles as hinge binding elements are described. Among these, the 4,7-diazaindazole compound 2c has improved drug-like properties and kinase selectivity than those of indazole 1, and displays greater than 80% inhibition of GSK3β phosphorylation in a BT474 tumor xenograft model in mice.  相似文献   

5.
The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).  相似文献   

6.
The development of a series of novel 4-substituted-2-aminopyrimidines as inhibitors of c-Jun N-terminal kinases is described. The synthesis, in vitro inhibitory values for JNK1, and the in vitro inhibitory value for a c-Jun cellular assay are discussed. Optimization of microsomal clearance led to the identification of 9c, whose kinase selectivity is reported.  相似文献   

7.
A series of 2-aminothiadiazole of inhibitors of AKT1 is described. SAR relationships are discussed, along with selectivity for protein kinase A (PKA) and cyclin-dependent kinase 2 (CDK2). Moderate selectivity observed in several compounds for AKT1 versus PKA is rationalized by X-ray crystallographic analysis. Key compounds showed activity in cellular assays measuring phosphorylation of two AKT substrates, PRAS40 and FKHRL1. Compound 30 was advanced to a mouse liver PD assay, where it showed dose-dependent inhibition of AKT activity, as measured by the inhibition of phospho-PRAS40.  相似文献   

8.
The synthesis and Pim kinase inhibition potency of a new series of pyrrolo[2,3-g]indazole derivatives is described. The results obtained in this preliminary structure–activity relationship study pointed out that sub-micromolar Pim-1 and Pim-3 inhibitory potencies could be obtained in this series, more particularly for compounds 10 and 20, showing that pyrrolo[2,3-g]indazole scaffold could be used for the development of new potent Pim kinase inhibitors. Molecular modeling experiments were also performed to study the binding mode of these compounds in Pim-3 ATP-binding pocket.  相似文献   

9.
A piperazine series of cyclin-dependent kinase (CDK) inhibitors have been identified. The compounds exhibit excellent physiochemical properties and a novel binding mode, whereby a bridging interaction via a water molecule with Asp 86 of CDK2, leads to selectivity for the CDK family of enzymes over other kinases. Piperazines 2e and 2i were subsequently shown to inhibit tumour growth when dosed orally in a nude mouse xenograft study. Additional chemical series that exploit this unexpected interaction with Asp 86 are also described.  相似文献   

10.
The synthesis and biological evaluation of novel Tie-2 kinase inhibitors are presented. Based on the pyrrolopyrimidine chemotype, several new series are described, including the benzimidazole series by linking a benzimidazole to the C5-position of the 4-amino-pyrrolopyrimidine core and the ketophenyl series synthesized by incorporating a ketophenyl group to the C5-position. Medicinal chemistry efforts led to potent Tie-2 inhibitors. Compound 15, a ketophenyl pyrrolopyrimidine urea analog with improved physicochemical properties, demonstrated favorable in vitro attributes as well as dose responsive and robust oral tumor growth inhibition in animal models.  相似文献   

11.
The design and synthesis of a novel series of c-jun N-terminal kinase (JNK) inhibitors is described. The development of the 4-(pyrazol-3-yl)-pyridine series was discovered from an earlier pyrimidine series of JNK inhibitors. Through the optimization of the scaffold 2, several potent compounds with good in vivo profiles were discovered.  相似文献   

12.
The synthesis and hit-to-lead SAR development of a pyrazolo[1,5-a]pyrimidine hit 4 is described leading to a series of potent, selective CHK1 inhibitors such as compound 17r. In the Letter, the further utility of the pyrazolo[1,5-a]pyrimidine template for the development of potent, selective kinase inhibitors is detailed.  相似文献   

13.
Casein kinase 1δ/ε have been identified as promising therapeutic target for oncology application, including breast and brain cancer. Here, we described our continued efforts in optimization of a lead series of purine scaffold inhibitors that led to identification of two new CK1δ/ε inhibitors 17 and 28 displaying low nanomolar values in antiproliferative assays against the human MDA-MB-231 triple negative breast cancer cell line and have physical, in vitro and in vivo pharmacokinetic properties suitable for use in proof of principle animal xenograft studies against human cancers.  相似文献   

14.
We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity. Exploration of this vector resulted in the identification of 12b and 12d, as potent JAK3 inhibitors, demonstrating improved JAK family and kinase selectivity.  相似文献   

15.
During efforts to improve the bioavailability of FMS kinase inhibitors 1 and 2, a series of saturated and aromatic 4-heterocycles of reduced basicity were prepared and evaluated in an attempt to also improve the cardiovascular safety profile over lead arylamide 1, which possessed ion channel activity. The resultant compounds retained excellent potency and exhibited diminished ion channel activity.  相似文献   

16.
Protein kinase ASK1 (Apoptosis signal-regulating kinase 1) plays a key role in cell differentiation, aging and apoptosis. High activity of the kinase is associated with several pathologies. The ASK1 inhibitors might be therapeutic for patients with neurodegenerative, cardiovascular diseases and fibrous histiocytoma. In this work the identification of ASK1 inhibitors was performed by the methods of computer modeling and biochemical testing in vitro. The virtual screening experiments were carried out targeting the ATP binding site of ASK1 by browsing the database which contained 164 840 compounds of diverse chemical classes. The best-scored 300 ligands have been taken for the kinase assay analysis. In vitro tests revealed that derivatives of 2-thioxo-thiazolidin-4-one exhibited inhibitory activity against ASK1. The most active compound was 5-bromo-3-(4-oxo-2-thioxo-thiazolidin-5-ylidene)-1,3-dihydro-indol-2-one (IC50 = 2 microM). Binding mode for inhibitors of this class with ASK1 ATP-binding site was proposed. Our results can be used for further optimization and developing more potent and selective inhibitors of ASK1.  相似文献   

17.
A series of rationally designed ROS1 tyrosine kinase inhibitors was synthesized and screened. Compound 12b has showed good potency with IC50 value of 209 nM, which is comparable with that of the reference lead compound 1. Molecular modeling studies have been performed, that is, a homology model for ROS1 was built, and the screened inhibitors were docked into its major identified binding site. The docked poses along with the activity data have revealed a group of the essential features for activity. Overall, simplification of the lead compound 1 into compound 12b has maintained the activity, while facilitated the synthetic advantages. A molecular interaction model for ROS1 kinase and inhibitors has been proposed.  相似文献   

18.
The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity. In vivo activity was demonstrated for compound 1A in a spontaneous hypertensive rat model.  相似文献   

19.
The preparation and evaluation of a series of inhibitors of Myc/Max dimerization and Myc-induced cell transformation are described providing mycmycin-1 (3) and mycmycin-2 (4).  相似文献   

20.
The mammalian mitogen-activated protein (MAP) kinase kinase kinase apoptosis signal-regulating kinase 1 (ASK1) is a pivotal component in cytokine- and stress-induced apoptosis. It also regulates cell differentiation and survival through p38 MAP kinase activation. Here we show that Ca2+ signalling regulates the ASK1–p38 MAP kinase cascade. Ca2+ influx evoked by membrane depolarization in primary neurons and synaptosomes induced activation of p38, which was impaired in those derived from ASK1-deficient mice. Ca2+/calmodulin-dependent protein kinase type II (CaMKII) activated ASK1 by phosphorylation. Moreover, p38 activation induced by the expression of constitutively active CaMKII required endogenous ASK1. Thus, ASK1 is a critical intermediate of Ca2+ signalling between CaMKII and p38 MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号