首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asialoglycoprotein receptor (ASGP-R) belongs to a wide family of C-type lectins and it is currently regarded as an attractive protein in the field of targeted drug delivery (TDD). It is abundantly expressed in hepatocytes and can be found predominantly on the sinusoidal surface especially of HepG2 cells. Therefore, ASGP-R can be used for the TDD of anticancer therapeutics against HCC and molecular diagnostic tools. To date, a variety of mono- and multivalent selective ASGP-R ligands have been discovered. Although many of these compounds have demonstrated a relatively high binding affinity towards the target, the reported synthetic schemes are not handled, complicated and include many non-trivial steps. In the current study, we describe a convenient and versatile synthetic approach to novel monovalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose fragment as an ASGP-R-recognition “core-head” and well-known nonselective cytostatic – Doxorubicin (Dox). This is the first example of the direct conjugation of a drug molecule to the ASGP-targeted warhead by a really convenient manner via a simple linker sequence. The performed MTS-based biological evaluation in HepG2 cells revealed the novel conjugates as having anticancer activity. Confocal microscopy showed that the molecules readily penetrated HepG2 membrane and were mainly localized within the cytoplasm instead of the nucleus. Per contra, Dox under the same conditions demonstrated good anticancer activity and was predominantly concentrated in the nucleus. Therefore, we speculate that the amide “trigger” that we have used in this study for linker attachment is a sufficiently stable inside the cells to be enzymatically or spontaneously degraded. As a consequence, we did not observe the release of the drug. Ligands containing triggers that are more liable towards endogenous hydrolysis within the tissue of targeting are strongly required.  相似文献   

2.
Paclitaxel(PTX) is one of the most effective anticancer drugs for the treatment of various solid tumors, but its clinical use is limited by its poor solubility, low bioavailability, and severe systemic toxicity. Encapsulation of PTX in polymeric nanoparticles is used to overcome these problems but these micelles still need improvements in stability, pharmacokinetics, therapeutic efficacy, and safety profiles. In this study, we demonstrate a facile fabrication of a stable PTX-binding micelle made from poly(ethylene glycol)-block-dendritic polylysine, whose primary amines were reacted with phenethyl isothiocyanate(PEITC), a hydrophobic anticancer agent under clinical study. The amphiphilic conjugate(PEG-Gx-PEITC; Gx, the generation of the polylysine dendron) formed well-defined micelles whose core was composed of phenyl groups and thiourea groups binding PTX via π-π stacking and hydrogen bonding. Compared with the PTX-loaded poly(ethylene glycol)-block-poly(D,L-lactide)(PEGPDLLA/PTX) micelles in clinical use, PTX-loaded PEG-Gx-PEITC third-generation(PEG-G3-PEITC/PTX) micelles showed slowed blood clearance, enhanced tumor accumulation, and thus much improved in vivo therapeutic efficacy in both subcutaneous and orthotopic human breast cancer xenografts. Therefore, PEG-G3-PEITC is a promising drug delivery system for PTX in the treatment of breast cancer.  相似文献   

3.
Jin Q  Mitschang F  Agarwal S 《Biomacromolecules》2011,12(10):3684-3691
The synthesis of a photo-triggered biocompatible drug delivery system on the basis of coumarin-functionalized block copolymers is reported. The coumarin-functionalized block copolymers poly(ethylene oxide)-b-poly(n-butyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy]coumarin)) (PEO-b-P(BMA- co-CMA)) were synthesized via atom transfer radical polymerization (ATRP). The micelle-drug conjugates were made by covalent bonding of anticancer drug 5-fluorouracil (5-FU) to the coumarin under UV irradiation at wavelength >310 nm. These micelle-drug conjugates possessed spherical morphology with diameters of 70 nm from TEM images. In vitro drug release experiments showed the controlled release of anticancer drug 5-FU from the micelle-drug conjugates under UV irradiation (254 nm). These micelle-drug conjugates also showed excellent biocompatibility by the in vitro cytotoxicity experiments. The results suggest that these micelle-drug conjugates could be a promising candidate for the delivery of anticancer agents with low side effects on normal cells and excellent therapeutic efficacy to cancer cells.  相似文献   

4.

Background

The search for new, innovative methods to treat all types of diseases, especially cancer-related ones, is a challenge taken by pharmaceutical companies and academic institutions. The use of conjugates containing widely-known and widely-used bioactive substances is one of the ways to solve this problem. Research into drug binding with macromolecular carrier systems has joined the search for new therapeutic strategies.

Methods

The main goal of this paper is the potential offered by the use of fibrinogen derivatives as an antileukemic drug carrier. Physicochemical properties of the obtained conjugate were analyzed, characterizing alterations in relation to the starting carrier and analyzing biological implications. The intraperitoneally (i.p.) inoculated P388 mouse leukemia model for in vivo studies was used.

Results and conclusions

Conjugates consisting of a fibrinogen derivative with a covalently bound anticancer drug were developed. Carrier preparation and a conjugate synthesis in aqueous solution were formulated, as well as purification of the conjugate was performed. The study showed that the survival of leukemia mice treated with FH–MTX conjugate was indeed significantly longer than survival in both untreated animals (control) and mice treated with unbound MTX. A significant increase in the antileukemic activity of MTX conjugated with hydrolysed fibrinogen was observed as compared with the unconjugated drug. Reported data suggest that hydrolysed fibrinogen can serve as a carrier molecule for the MTX drug with the aim of enhancing its antileukemic activity.

General significance

Conjugates consisting of a fibrinogen derivative with a covalently bound anticancer drug seem to be a promising anticancer drug.  相似文献   

5.
BackgroundVasculogenic mimicry (VM) is a newly described tumor vascular phenomenon that is independent of traditional angiogenesis and provides an adequate blood supply for tumor growth. VM has been consistently observed in different cancer types. Hence, inhibition of VM may be considered a new anticancer therapeutic strategy.PurposeThis study aimed to elucidate the potential anticancer effect of daurisoline (DS) on hepatocellular carcinoma (HCC) and the potential molecular mechanism by which DS inhibits VM. We also verified whether combination treatment with sorafenib and DS constitutes a novel therapeutic approach to prevent HCC progression.MethodsThe effects of DS on proliferation were evaluated by Cell Counting Kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays. 4′,6-Diamidino-2-phenylindole (DAPI) staining and flow cytometric analysis were employed to investigate its effects on apoptosis. Western blot analysis, Matrigel tube formation assays, pulldown assays and immunofluorescence staining were applied to validate the potential mechanism by which DS inhibits VM. Mouse xenograft models were used to evaluate anticancer activities.ResultsDS inhibited HCC cell proliferation, induced HCC cell apoptosis and repressed VM formation by inactivating RhoA/ROCK2-mediated AKT and ERK-p38 MAPK signaling. Additionally, DS dramatically sensitized HCC cell lines to sorafenib, a curative anticancer drug for patients with advanced HCC.ConclusionsOur study provides insights into the molecular mechanisms underlying DS-induced inhibition of VM, which may facilitate the development of a novel clinical anti-HCC drug. Moreover, our findings suggest that the combination of DS and sorafenib constitutes a potential therapeutic strategy for HCC.  相似文献   

6.
Worldwide, Hepatocellular Carcinoma (HCC) endures to be a prominent cause of cancer death. Treatment of HCC follows multiple therapies which are not entirely applicable for treatment of all patients. HCC usually arises contextual to chronic liver diseases and is often discovered at later stages which makes treatment options more complex. The present study aimed at design, synthesis & evaluation of new pyridazinoquinazoline derivatives as potential nontoxic anti-hepatocellular carcinoma (HCC) agents, through inhibition of Vascular endothelial growth factor -2 (VEGFR-2). Novel Pyridazino[3, 4, 5-de]quinazoline derivatives (2-6) were designed & synthesized. Their structures were confirmed via spectral and microanalytical data. They were tested for their in vitro VEGFR-2 inhibition & anticancer activity against human liver cancer cell line (HEPG-2). Molecular docking was investigated into VEGFR-2 site. In vivo studies of VEGRF-2 inhibition and the anti-apoptotic effect of the new compounds were determined in liver of irradiated rats. Toxicity of synthesized compounds was also assessed. The results showed that compounds 3-6 have significant antitumor activity and proved to be non-toxic. The ethoxy aniline derivative 6, exhibited the highest activity both in vitro and in vivo compared to the reference drug used, sorafenib. Compound 6 could be considered a promising nontoxic anti HCC agent and this could be partially attributed to its VEGFR-2 inhibition. Future preclinical investigation would be carried out to confirm the specific and exact mechanism of action of these derivatives especially compound 6 as an effective pharmaceutical agent after full toxicological and pharmacological assessment.  相似文献   

7.
A series of novel quinazolinone linked pyrrolobenzodiazepine (PBD) conjugates were synthesized. These compounds 4af and 5af were prepared in good yields by linking C-8 of DC-81 with quinazolinone moiety through different alkane spacers. These conjugates were tested for anticancer activity against 11 human cancer cell lines and found to be very potent anticancer agents with GI50 values in the range of <0.1–26.2 μM. Among all the PBD conjugates, one of the conjugate 5c was tested against a panel of 60 human cancer cells. This compound showed activity for individual cancer cell lines with GI50 values of <0.1 μM. The thermal denaturation studies exhibited effective DNA binding ability compared to DC-81 and these results are further supported by molecular modeling studies. The detailed biological aspects of these conjugates on A375 cell line were studied. It was observed that compounds 4b and 5c induced the release of cytochrome c, activation of caspase-3, cleavage of PARP and subsequent cell death. Further, these compounds when treated with A375 cells showed the characteristic features of apoptosis like enhancement in the levels of p53, p21 and p27 inhibition of cyclin dependent kinase-2 (CDK2) and suppression of NF-κB. Moreover, these two compounds 4b and 5c control the cell proliferation by regulating anti-apoptotic genes like (B-cell lymphoma 2) Bcl-2. Therefore, the data generated suggests that these PBD conjugates activate p53 and inhibit NF-κB and thereby these compounds could be promising anticancer agents with better therapeutic potential for the suppression of tumours.  相似文献   

8.
Paclitaxel (PTX) is the first-line treatment drug for breast cancer. However, drug resistance after a course of treatment and low selectivity restricted its clinical utility sometimes. In this study, we successfully bound PTX and vorinostat (SAHA) to form co-prodrugs based on the synergistic anticancer effects. The PTX-SAHA co-prodrugs were conjugated by glycine (1a) and succinic acid (1b) respectively and the former has shown better activity in cytotoxicity, cell cycle arrest and western-blot experiments. Therefore, 1a was further prepared to nanomicelles with mPEG2000-PLA1750 as the carrier by using thin film method. PTX-SAHA co-prodrug nanomicelles were spherical with a particle size of 20–100?nm. In vitro drug release test showed 1a nanomicelles had sustained release effect, which could reduce the resistance of PTX. In vitro cytotoxicity was evaluated by SRB assay in HCT-116 cells, MCF-7 cells and drug-resistant MCF-7/ADR cells. The results showed 1a nanomicelles had comparable or even better cytotoxicity than PTX especially in the MCF-7/ADR cells. All the results suggested that PTX-SAHA co-prodrug nanomicelles were promising treatment for PTX resistance cancer.  相似文献   

9.
Colon-specific azo based polyphosphazene–anticancer drug conjugates (1118) have been synthesized and evaluated by ex-vivo release studies. The prepared polyphosphazene drug conjugates (1118) are stable in acidic (pH = 1.2) buffer which showed that these polymer drug conjugates are protected from acidic environment which is the primary requirement of colon specific targeted drug delivery. The ex-vivo release profiles of polyphosphazene drug conjugates (1118) have been performed in the presence as well as in the absence of rat cecal content. The results showed that more than 89% of parent drugs (methotrexate and gemcitabine) are released from polymeric backbone of polyphosphazene drug conjugates (14 and 18) having n-butanol (lipophilic moiety). The in-vitro cytotoxicity assay has also been performed which clearly indicated that these polymeric drug conjugates are active against human colorectal cancer cell lines (HT-29 and COLO 320 DM). The drug release kinetic study demonstrated that Higuchi’s equation is found to be best fitted equation which showed that release of drug from polymeric backbone as square root of time dependent process based on non-fickian diffusion. Therefore, the synthesized polyphosphazene azo based drug conjugates of methotrexate and gemcitabine are the potential candidates for colon targeted drug delivery system with minimal undesirable side effects.  相似文献   

10.
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR), and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko’s fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by methylation specific PCR. In MDA MB 231 cells, a synergistic antiproliferative effect was observed with a combination of 10 μM 5-aza-CdR and these three anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RARβ2, Slit2, GSTP1, and MGMT. Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.  相似文献   

11.
A series of 2,5-diaryloxadiazole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates have been prepared and evaluated for their anticancer activity. These conjugates have shown promising activity with GI50 values ranging from <0.1 to 0.29 μΜ. It is observed that some of these conjugates particularly 4a, 4d, 4i and 4l exhibit significant anticancer activity. Some detailed biological assays relating to the cell cycle aspects associated to Bax and caspases have been examined with a view to understand the mechanism of action of these conjugates.  相似文献   

12.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.  相似文献   

13.
Multidrug resistance (MDR) is a significant challenge to effective cancer chemotherapy treatment. However, the development of a drug delivery system that allows for the sustained release of combined drugs with improved vesicle stability could overcome MDR in cancer cells. To achieve this, we have demonstrated codelivery of doxorubicin (Dox) and paclitaxel (PTX) via a crosslinked multilamellar vesicle (cMLV). This combinatorial delivery system achieves enhanced drug accumulation and retention, in turn resulting in improved cytotoxicity against tumor cells, including drug-resistant cells. Moreover, this delivery approach significantly overcomes MDR by reducing the expression of P-glycoprotein (P-gp) in cancer cells, thus improving antitumor activity in vivo. Thus, by enhancing drug delivery to tumors and lowering the apoptotic threshold of individual drugs, this combinatorial delivery system represents a potentially promising multimodal therapeutic strategy to overcome MDR in cancer therapy.  相似文献   

14.
Oblongifolin C, one of the polyprenylated benzoylphloroglucinol natural products (PPAPs) isolated from the fruits of Garcinia yunnanensis Hu, was recently discovered to be a potent anti-tumor agent. A collection of 12 derivatives with modifications on the benzophenone moieties were synthesized and tested for c-Met kinase inhibition and cytotoxicity against the HepG2, Miapaca-2, HCC827, Hela, A549, AGS, and HT-29 cell lines in vitro. An oxidized derivative, 10, was found to possess strong inhibition and anti-migration properties in the HCC827 cell line and serves as a potential lead compound for the development of new anticancer drugs. In addition, structure–activity relationships (SAR) were also evaluated to provide key information for future anticancer drug development.  相似文献   

15.
A series of new anilino substituted pyrimidine linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates were prepared and evaluated for their anticancer activity. The effects of four promising PBD conjugates on cell cycle of cancerous cell line A375 were investigated. These compounds showed the characteristic features of apoptosis like enhancement in the levels of p53, release of cytochrome c, and cleavage of PARP.  相似文献   

16.
Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.  相似文献   

17.
Polymer conjugates of anticancer drugs have shown high potential for assisting in cancer treatments. The pH-labile spacers allow site-specific triggered release of the drugs. We synthesized and characterized model drug conjugates with hydrazide bond-containing poly[N-(2-hydroxypropyl)methacrylamide] differing in the chemical surrounding of the hydrazone bond-containing spacer to find structure–drug release rate relationships. The conjugate selected for further studies shows negligible drug release in a pH 7.4 buffer but released 50% of the ellipticinium drug within 24 h in a pH 5.0 phosphate saline buffer. The ellipticinium drug retained the antiproliferative activity of the ellipticine.  相似文献   

18.
Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner. As a proof of concept, we synthesized dual drug ADCs carrying monomethyl auristain E (MMAE, tubulin polymerization inhibitor) and pyrrolobenzodiazepine dimer (PBD, DNA minor groove alkylator). We then evaluated the dual drug ADCs for in vitro efficacy and confirmed the dual mechanism of action.  相似文献   

19.
《Phytomedicine》2015,22(13):1139-1149
BackgroundPolyphyllin I (PPI), a bioactive phytochemical isolated from the rhizoma of Paris polyphyllin, exerts preclinical anticancer efficacy in various cancer models. However, the effects of PPI on regulatory human hepatocellular carcinoma (HCC) cell proliferation and its underlying mechanisms remain unknown.PurposeThis study investigated the antiproliferation effect of PPI on HCC cells and its underlying mechanisms.MethodsCell viability was measured by MTT assay. Cell death, apoptosis and acidic vesicular organelles (AVOs) formation were determined by flow cytometry. Protein levels were analyzed by Western blot analysis.ResultsPPI induced apoptosis through the caspase-dependent pathway and activated autophagy through the PI3K/AKT/mTOR pathway. Blockade of autophagy by pharmacological inhibitors or RNA interference enhanced the cytotoxicity and antiproliferation effects of PPI. Moreover, chloroquine (CQ) enhanced the antiproliferation effect of PPI on HCC cells via the caspase-dependent apoptosis pathway by inhibiting protective autophagy. Therefore, the combination therapy of CQ and PPI exhibited synergistic effects on HCC cells compared with CQ or PPI alone.ConclusionThe current findings strongly indicate that PPI can induce protective autophagy in HCC cells, thereby providing a novel target in potentiating the anticancer effects of PPI and other chemotherapeutic drugs in liver cancer treatment. Moreover, the combination therapy of CQ and PPI is an effective and promising candidate to be further developed as therapeutic agents in the treatment of liver cancer.  相似文献   

20.
The treatment outcome of acute lymphoblastic leukemia (ALL) has improved steadily over the last 50 years. However, the cure rates are unlikely to be raised further with current therapies. Since increasing the dosage of chemotherapeutic agents could also elevate toxicity, a solution to how one could achieve maximum therapeutic effect with the minimum dosage possible is imminent. One possibility is the employment of combination drug therapies. Arsenic trioxide (ATO) is a widely used drug for acute promyelocytic leukemia (APL). Its combination with other drugs presented therapeutic activities in malignant cancers other than APL. Considering the fact that ATO induces mitotic arrest prior to apoptosis induction, we attempted to investigate the potential anti-cancer effects of ATO in combination with the microtubule-stabilizing agent, paclitaxel (PTX), using malignant lymphocytes as in vitro models. Three malignant lymphocytic cell lines and primary cells were treated with ATO and/or PTX. Using the Chou–Talalay analysis for evaluation of combined effect of ATO and PTX, we found a synergistic effect of the two drugs in the inhibition of cell growth. We also found that the combination of ATO and PTX at low concentrations synergistically induced mitotic arrest followed by apoptosis in malignant lymphocytes, which increased phosphorylated cyclin-dependent kinase 1 (Cdk1) on Thr161 and promoted the dysregulated activation of Cdk1. The ATO/PTX combination also significantly enhanced the activation of spindle checkpoint by inducing the formation of the inhibitory checkpoint complex BubR1/Cdc20. Our study provided the first in vitro demonstration that low concentrations of ATO and PTX synergistically induce mitotic arrest in malignant lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号