首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   

2.
The synthesis, structural characterization and biological activity of eight ortho-quinone(N-aryl)-oximine rhenium(i) complexes are described. The reaction of the halogenido complexes (CO)5ReX (X=Cl (4), Br (5)) with 2-nitroso-N-arylanilines {(C6H3ClNO)NH(C6H4R)} (R = p-Cl, p-Me, o-Cl, H) (3ad) in tetrahydrofurane (THF) yields the complexes fac-(CO)3XRe{(C6H3ClNO)NH(C6H4R)} (6ad, 7ad) with the tautomerized ligand acting as a N,N′-chelate. The substitution of two carbonyl ligands leads to the formation of a nearly planar 5-membered metallacycle. During coordination the amino-proton is shifted to the oxygen of the nitroso group which can be observed in solution for 6 and 7 by 1H NMR spectroscopy and in solid state by crystal structure analysis. After purification, all compounds have been fully characterized by their 1H and 13C NMR, IR, UV/visible (UV/Vis) and mass spectra. The X-ray structure analyses revealed a distorted octahedral coordination of the CO, X and N,N′-chelating ligands for all Re(i) complexes. Biological activity of four oximine rhenium(i) complexes was assessed in vitro in two highly aggressive cancer cell lines: human metastatic melanoma A375 and human chronic myelogenous leukemia K562. Chlorido complexes (6a and 6c) were more efficient than bromido compounds (7d and 7b) in inducing apoptotic cell death of both types of cancer cells. Melanoma cells were more susceptible to tested rhenium(i) complexes than leukemia cells. None of the ligands (3ad) showed any significant anticancer activity.  相似文献   

3.
In this investigation, a series of 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea receptor tyrosine kinase inhibitors were synthesized by a simple and efficient structure-based design. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against human chronic myeloid leukemia (CML) cell line K562, but very weak or no cellular toxicity through monitoring the growth kinetics of K562 cell during a period of 72 h using the real-time live-cell imaging. Among these compounds, 1-(5-((6-((3-morpholinopropyl) amino)pyrimidin-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-(4-(trifluoromethyl)phenyl)urea (7) exhibited the least cellular toxicity and better biological activity in cellular assays (K562, IC50: 0.038 μM). Compound 7 also displayed very good induced-apoptosis effect for human CML cell line K562 and exerted its effect via a significantly reduced protein phosphorylation of PI3K/Akt signal pathway by Human phospho-kinase array analysis. In vitro results indicate that 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea derivatives are lead molecules for further development as treatment of chronic myeloid leukemia and cancer.  相似文献   

4.
In this paper, based on Plastoquinone (PQ) analogs possessing substituted aniline containing alkoxy group(s), new 2,3-dimethyl-5-amino-1,4-benzoquinones (PQ1-15) were designed and synthesized in either two steps or one-pot reaction. Specifically, the substituted amino moiety containing mono or poly alkoxy group(s) with various positions and groups were mainly explored to understand the structure-activity relationships for the cytotoxic activity against three human cancer cell lines (K562, Jurkat, and MT-2) and human peripheral blood mononuclear cells (PBMC). PQ2 was found to be most effective anticancer compound on K562 and Jurkat cell lines with IC50 values of 6.40 ± 1.73 μM and 7.72 ± 1.49 μM, respectively. Interestingly, the compound was non-cytotoxic to normal PBMC and also MT-2 cancer cells. PQ2 which showed significant selectivity in MTT assay was chosen for apoptotic/necrotic evaluation and results exhibited that it induced apoptosis in K562 cell line after 6 h of treatment. PQ2 showed anti-Abelson kinase 1 (Abl1) activity with different inhibitory profile than Imatinib in the panel of eight kinases. The binding mode of PQ2 into Abl ATP binding pocket was predicted in silico showing the formation of some key interactions. In addition, PQ2 induced Bcr-Abl1 mediated ERK pathway in human chronic myelogenous leukemia (CML) cells. Furthermore, DNA-cleaving capability of PQ2 was clearly enhanced by iron (II) complex system. Afterward, a further in silico ADMET prediction revealed that PQ2 possesses desirable drug-like properties and favorable safety profile. These results indicated that PQ2 has multiple mechanism of action and two of them are anti-Bcr-Abl1 and DNA-cleaving activity. This study suggests that Plastoquinone analogs could be potential candidates for multi-target anticancer therapy.  相似文献   

5.
6.
XN4 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). The inhibition of proliferation of K562 and K562/G01 cells was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). The mRNA levels of NADPH oxidase 1-5 (Nox1-5) genes were evaluated by qRT-PCR. The levels of extracellular reactive oxygen species (ROS), DNA damage, apoptosis, and cell cycle progression were examined by flow cytometry (FCM). Protein levels were analyzed by immunoblotting. XN4 significantly inhibited the proliferation of K562 and K562/G01 cells, with IC50 values of 3.75±0.07 µM and 2.63±0.43 µM, respectively. XN4 significantly increased the levels of Nox4 and Nox5 mRNA, stimulating the generation of intracellular ROS, inducing DNA damage and activating ATM-γ-H2AX signaling, which increased the number of cells in the S and G2/M phase of the cell cycle. Subsequently, XN4 induced apoptotic cell death by activating caspase-3 and PARP. Moreover, the above effects were all reversed by the ROS scavenger N-acetylcysteine (NAC). Additionally, XN4 can induce apoptosis in progenitor/stem cells isolated from CML patients’ bone marrow. In conclusion, XN4-induced DNA damage and cell apoptosis in CML cells is mediated by the generation of ROS.  相似文献   

7.
8.
The advances in the treatment of chronic myeloid leukemia (CML) during the last years were also accompanied by the development of evading strategies by tumor cells, resulting in chemotherapy resistance in some patients. Patented organopalladium compounds derived from the reaction of N,N-dimethyl-1-phenethylamine (dmpa) with [1,2-ethanebis(diphenylphosphine)] (dppe) exhibited a potent antitumor activity in vivo and in vitro in melanoma cells. We showed here that the cyclopalladated derivative [Pd2(R(+))C2, N-dmpa)2(μ-dppe)Cl2], named compound 7b, was highly effective to promote cell death in the K562 human leukemia cells and its mechanisms of action were investigated. It was shown that compound 7b was able to promote exclusively apoptotic cell death in K562 cells associated to cytochrome c release and caspase 3 activation. This cytotoxic effect was not observed in normal peripheral mononuclear blood cells. The compound 7b-induced intrinsic apoptotic pathway was triggered by the protein thiol oxidation that resulted in the dissipation of the mitochondrial transmembrane potential. The preventive effect of the dithiothreitol on the compound 7b-induced cell death and all downstream events associated to apoptosis confirmed that death signal was elicited by the thiol oxidation. These findings contribute to the elucidation of the palladacycle 7b-induced cell death mechanism and present this compound as a promising drug in the CML antitumor chemotherapy.  相似文献   

9.
We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50?=?0.039?nM vs. 0.069?nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50?=?0.25?nM and 0.26?nM vs. 0.11?nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d15f and oxadiazole compounds 24a24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50?=?0.14?μM and 0.05?μM vs. 8.98?μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.  相似文献   

10.
s-Triazine is considered a privileged structure, as it is found in several FDA-approved drugs. In the framework of our ongoing medicinal chemistry project based on the use of s-triazine as a scaffold, we synthesized a series of mono- and di-pyrazolyl-s-triazine derivatives and tested them against four human cancer cell lines, namely Human breast carcinoma (MCF 7 and MDA-MB-231), hepatocellular carcinoma (HepG2), colorectal carcinoma (LoVo), and leukemia (K562). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all four types of human cancer cell lines, however, compounds 4a, and 6g, both of them have a piperidine moiety in their structure were most effective. These two compounds affected the cell viability of cancer cells, with IC50 values within the range between 5 to 9 µM. The cell cycle analysis showed that 4a and 6g induced S and G2/M phase cell cycle arrest in K562 cells. This could be the mechanism by which these molecules induced cytotoxicity in tested cancer cells. The prepared compounds were tested in zebrafish embryos to evaluate in vivo and developmental toxicity of the pyrazolyl-s-triazine derivatives in animals. None of the derivatives were lethal in the concentration range tested.  相似文献   

11.
12.
The crystal structure of the complexes (I)Ni[C11N8N2(OH)2]2SO4, (II) Cu[C11H8N2(OH)2]2Cl2· 4H2O and (III) Cu[C11H8N2(OH)2]2(NO3)2·2H2O have been determined by three-dimensional X-ray analysis methods. Crystal data are: (I), monoclinic, space group C2/c, Z = 4, a = 19.666(4), b = 7.994(2), c = 16.045(6) /rA, /gb = 111.231(9)°, (II), monoclinic, space group C2/c, Z = 4, a = 14.504(4), b = 12.333(8), c = 14.630(3) Å, /gb = 90.92°; and (IIl), monoclinic, space group P21/n, Z = 2, a = 7.601(5), b = 11.977(4), c = 14.463(6) Å, β = 93.10(8)°. These structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to the metal. Two di-2-pyridyl ketone ligands are thus bonded to the metal atom in a tridentate fashion. In the nickel complex (I), all six coordination interactions appear to have approximately the same strength. However, in the copper complexes (II) and (III), the pyridyl nitrogens are strongly coordinating to the metal in the equatorial plane, while the hydroxyl groups are more weakly coordinating in the axial direction. The metal to ligand bond distances are: (I) dNi−O = 2.098(4), dNiN = 2.062(4), 2.087(4) Å, (II) dCuO = 2.465(5), dCuN = 1.994(5), 2.006(5) Å, (III) dCuO = 2.464(5), dCuN = 1.990(5), 2.036(5) Å. The neutral diol that results from hydrolysis of di-2-pyridyl ketone is stabilized by coordination to the metal and such coordination is little affected by changes in the metal, the anion or the extent of hydration.  相似文献   

13.
A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91–5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52–473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3β in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.  相似文献   

14.
Resistance toward imatinib (IM) and other BCR/ABL tyrosine kinase inhibitors remains troublesome in the treatment of advanced stage chronic myeloid leukemia (CML). The aim of this study was to estimate the reversal effects of down-regulation of Na+/H+ exchanger 1 (NHE1) on the chemoresistance of BCR-ABL-positive leukemia patients'' cells and cell lines. After treatment with the specific NHE1 inhibitor cariporide to decrease intracellular pH (pHi), the heme oxygenase-1 (HO-1) levels of the K562R cell line and cells from IM-insensitive CML patients decreased. HO-1, as a Bcr/Abl-dependent survival molecule in CML cells, is important for the resistance to tyrosine kinase inhibitors in patients with newly diagnosed CML or IM-resistant CML. Silencing PKC-β and Nrf-2 or treatment with inhibitors of p38 pathways obviously blocked NHE1-induced HO-1 expression. Furthermore, treatment with HO-1 or p38 inhibitor plus IM increased the apoptosis of the K562R cell line and IM-insensitive CML patients'' cells. Inhibiting HO-1 enhanced the activation of caspase-3 and poly(ADP-ribose) polymerase-1. Hence, the results support the anti-apoptotic role of HO-1 induced by NHE1 in the K562R cell line and IM-insensitive CML patients and provide a mechanism by which inducing HO-1 expression via the PKC-β/p38-MAPK pathway may promote tumor resistance to oxidative stress.  相似文献   

15.
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) triggers the cell-extrinsic apoptosis pathway by complexation with its signaling receptors such as death receptors (DR4 and DR5). TRAIL is a C3-symmetric type II transmembrane protein, consists of three monomeric units. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy?=?2-(4-tolyl)pyridine) also possess a C3-symmetric structure and are known to have excellent luminescence properties. In this study, we report on the design and synthesis of a C3-symmetric and luminescent Ir complex-peptide hybrid (IPH), which contains a cyclic peptide that had been reported to bind to death receptor (DR5). The results of MTT assay of Jurkat, K562 and Molt-4 cells with IPH and co-staining experiments with IPH and an anti-DR5 antibody indicate that IPH binds to DR5 and induces apoptosis in a manner parallel to the DR5 expression level. Mechanistic studies of cell death suggest that apoptosis and necrosis-like cell death are differentiated by the position of the hydrophilic part that connects Ir complex and the peptide units. These findings suggest that IPHs could be a promising tool for controlling apoptosis and necrosis by activation of the extra-and intracellular cell death pathway and to develop new anticancer drugs that detect cancer cells and induce their cell death.  相似文献   

16.
Bcr–Abl plays an essential role in the pathogenesis and development of chronic myeloid leukaemia (CML). Inhibition of Bcr–Abl has great potential for therapeutic intervention in CML. In order to obtain novel and potent Bcr–Abl inhibitors, twenty seven 4,6-disubstituted pyrimidines were synthesized and evaluated herein. The biological results indicated that four compounds of them (C4, C5, C16, and C23) were potent Bcr–Abl inhibitors which were comparable to positive control. Moreover, C4 and C5 displayed promising antiproliferative activity against K562 cells. The results suggested that these 4,6-disubstituted pyrimidines could serve as promising leads for further optimization of Bcr–Abl inhibitors.  相似文献   

17.
We have developed a methodology for quantitative analysis and concurrent identification of proteins by the modification of cysteine residues with a combination of iodoacetanilide (IAA, 1) and 13C7-labeled iodoacetanilide (13C7-IAA, 2), or N-ethylmaleimide (NEM, 3) and d5-labeled N-ethylmaleimide (d5-NEM, 4), followed by mass spectrometric analysis using nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry (nano LC/nano-ESI-IT-MS). The combinations of these stable isotope-labeled and unlabeled modifiers coupled with LC separation and ESI mass spectrometric analysis allow accurate quantitative analysis and identification of proteins, and therefore are expected to be a useful tool for proteomics research.  相似文献   

18.
A series of novel N-phenylbenzamide-4-methylamine acridine derivatives were designed and synthesized based initially on the structure of amsacrine (m-AMSA). Molecular docking suggested that the representative compound 9a had affinity for binding DNA topoisomerase (Topo) II, which was comparable with that of m-AMSA, and furthermore that 9a could have preferential interactions with Topo I. After synthesis of 9a and analogues 9b-9f, these were all tested in vitro and the synthesized compounds displayed potent antiproliferative activity against three different cancer cell lines (K562, CCRF-CEM and U937). Among them, compounds 9b, 9c and 9d exhibiting the highest activity with IC50 value ranging from 0.82 to 0.91 μM against CCRF-CEM cells. In addition, 9b and 9d also showed high antiproliferative activity against U937 cells, with IC50 values of 0.33 and 0.23 μM, respectively. The pharmacological mechanistic studies of these compounds were evaluated by Topo I/II inhibition, western blot assay and cell apoptosis detection. In summary, 9b effectively inhibited the activity of Topo I/II and induced DNA damage in CCRF-CEM cells and, moreover, significantly induced cell apoptosis in a concentration-dependent manner. These observations provide new information and guidance for the structural optimization of more novel acridine derivatives.  相似文献   

19.
Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.  相似文献   

20.
CCN3, a tumour suppressor gene, is down-regulated as a result of BCR-ABL tyrosine kinase activity in Chronic Myeloid Leukaemia (CML). We have established a stable CCN3 expression model in the human K562 CML cell line and have further validated the role for CCN3 in the leukaemogenic process. K562 cells stably transfected with CCN3 (K562/CCN3; 2.25 × 106 copies per 50 ng cDNA) demonstrated over 50% reduction in cell growth in comparison to cells stably transfected with empty vector (K562/control; p = 0.005). K562/CCN3 cells had reduced colony formation capacity (reduced by 29.7%, p = 0.03) and reduced mitogenic signalling in comparison to K562/control cells (reduced by 29.5% (p = 0.002) and 37.4% (p = 0.017) for phosphorylation levels of ERK and AKT respectively). K562/CCN3 cells showed an accumulation of events within the subG0 phase of the cell cycle and increased apoptosis was confirmed by a three-fold increase in annexin V binding (p < 0.05). K562/CCN3 cells exposed to Imatinib (1 μM and 5 μM) showed an increase in events within the subG0 phase of cell cycle over 96 h and mirrored the enhanced cell kill demonstrated by Annexin staining. Wild type K562 cells treated with recombinant human Ccn3 (10 nM) in combination with Imatinib (5 μM) also displayed enhanced cell kill (p = 0.008). K562/CCN3 cells displayed increased adhesion to matrigel™ (2.92 ± 0.52 fold increase compared to K562/control) which was commensurate with increased expression of the alpha 6 and beta 4 integrins (6.53 ± 0.47 and 1.94 ± 0.07 fold increase in gene expression respectively (n = 3, p < 0.05)). CCN3 restores cellular growth regulatory properties that are absent in CML and sensitises CML cells to imatinib induced apoptosis. CCN3 may provide novel avenues for the development of alternate therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号