首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of inoculum level on xylitol production byCandida guilliermondii was evaluated in a rice straw hemicellulose hydrolysate. High initial cell density did not show a positive effect in this bioconversion since increasing the initial cell density from 0.67 g L–1 to 2.41 g L–1 decreased both the rate of xylose utilization and xylitol accumulation. The maximum xylitol yield (0.71 g g–1) and volumetric productivity (0.56 g L–1 h–1) were reached with an inoculum level of 0.9 g L–1. These results show that under appropriate inoculum conditions rice straw hemicellulose hydrolysate can be converted into xylitol by the yeastC. guilliermondii with efficiency values as high as 77% of the theoretical maximum.  相似文献   

3.
Summary Rice straw was used as a lignocellulosic source to provide rich pentose media. By using a well characterized yeast strain,Candida guilliermondii FTI 20037, the hydrolysate obtained was converted to xylitol with an efficiency of 75% and production of 27 g of xylitol per liter in 48 hours. The satisfactory results reported here can be attributed to the low concentrations of toxic components generated throughout the chemical depolymerization of this raw material.  相似文献   

4.
Rice straw is one of the abundant lignocellulosic feed stocks in the world and has been selected for producing ethanol at an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses).Biphasic acid hydrolysis was carried out with sulphuric acid using rice straw. After acid hydrolysis, the sugars, furans and phenolics were estimated. The initial concentration of sugar was found to be 16.8 g L−1. However to increase the ethanol yield, the initial sugar concentration of the hydrolysate was concentrated to 31 g L−1 by vacuum distillation. The concentration of sugars, phenols and furans was checked and later detoxified by over liming to use for ethanol fermentation. Ethanol concentration was found to be 12 g L−1, with a yield, volumetric ethanol productivity and fermentation efficiency of 0.33 g L−1 h−1, 0.4 g g−1 and 95%, respectively by co-culture of OVB 11 (Saccharomyces cerevisiae) and Pichia stipitis NCIM 3498.  相似文献   

5.
AIMS: To evaluate a simple and economical technique to improve xylitol production using concentrated xylose solutions prepared from rice straw hemicellulosic hydrolysate. METHODS AND RESULTS: Experiments were carried out with rice straw hemicellulosic hydrolysate containing 90 g l-1 xylose, with and without the addition of nutrients, using the yeast Candida guilliermondii previously grown on the hydrolysate (adapted cells) or on semi-defined medium (unadapted cells). By this method, the yield of xylitol increased from 17 g l-1 to 50 g l-1, and xylose consumption increased from 52% to 83%, after 120 h of fermentation. The xylitol production rates were very close to that (0.42 g l-1 h-1) attained in a medium simulating hydrolysate sugars. CONCLUSION: Yeast strain adaptation to the hydrolysate showed to be a suitable method to alleviate the inhibitory effects of the toxic compounds. Adapted cells of Candida guilliermondii can efficiently produce xylitol from hydrolysate with high xylose concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeast adaptation helps the bioconversion process in hydrolysate made from lignocellulosic materials. This low-cost technique provides an alternative to the detoxification methods used for removal of inhibitory compounds. In addition, the use of adapted inocula makes it possible to schedule a series of batch cultures so that the whole plant can be operated almost continuously with a concomitant reduction in the overall operation time.  相似文献   

6.
Rice straw is a by-product of rice production, and a great bioresource as raw biomass material for manufacturing value-adding protein for animal feedstock, which has been paid more and more attention. In the present work, utilizing rice straw hydrolysate as a substrate for microbial biomass production in 11.5L external-loop airlift bioreactors was investigated. Rice straw hydrolysate obtained through acid-hydrolyzing rice straw was used for the culture of yeast Candida arborea AS1.257. The influences of gas flow rate, initial liquid volume, hole diameter of gas sparger and numbers of sieve plates on microbial biomass production were examined. The best results in the external-loop airlift bioreactor were obtained under 9.0 L initial liquid volume, 1.1 (v/v)/min gas flow rate during culture time of 0-24 h and 1.4 (v/v)/min gas flow rate of 24-48 h at 29+/-1 degrees C. The addition of the sieve plates in the riser of the external-loop airlift bioreactor increased productivity. After 48 h, under optimized operation conditions, crude protein productivity with one sieve and two sieves were 13.6 mg/mL and 13.7 mg/mL, respectively, comparing 12.7 mg/mL without sieves in the airlift bioreactor and 11.7 mg/mL in the in the 10-L mechanically stirred tank bioreactor. It is feasible to operate the external-loop airlift bioreactors and possible to reduce the production cost for microbial biomass production from the rice straw hydrolysate.  相似文献   

7.
The rising trend of bioflavour synthesis by microorganisms is hindered by the high manufacturing costs, partially attributed to the cost of the starting material. To overcome this limitation, in the present study, dilute-acid hydrolysate of orange peel was employed as a low-cost, rich in fermentable sugars substrate for the production of flavour-active compounds by Saccharomyces cerevisiae. With this purpose, the use of immobilized cell technology to protect cells against the various inhibitory compounds present in the hydrolysate was evaluated with regard to yeast viability, carbon and nitrogen consumption and cell ability to produce flavour active compounds. For cell immobilization the encapsulation in Ca alginate beads was used. The results were compared with those obtained using free-cell system. Based on the data obtained immobilized cells showed better growth performance and increased ability for de novo synthesis of volatile esters of "fruity" aroma (phenylethyl acetate, ethyl hexanoate, octanoate, decanoate and dodecanoate) than those of free cells. The potential for in situ production of new formulations containing flavour-active compounds derive from yeast cells and also from essential oil of orange peel (limonene, α-terpineol) was demonstrated by the fact that bioflavour mixture was found to accumulate within the beads. Furthermore, the ability of the immobilized yeast to perform efficiently repeated batch fermentations of orange peel hydrolysate for bioflavour production was successfully maintained after six consecutive cycles of a total period of 240 h.  相似文献   

8.
Thirty different yeast strains belonging to four different genera (Candida, Debaryomyces, Hansenula and Pichia) were evaluated for xylitol production in rice straw hemicellulose hydrolysate under two aeration levels. Candida guillier-mondii FTI-20037, C. mogii NRRL Y-17032, C. parapsilosis IZ-1710 and C. veronae IZ-945 produced xylitol from rice straw hemicellulose hydrolysate with high yields (>60%). The best performance was by C. mogii, which yielded 0.65 g xylitol/g at 0.40 g/l.h over 75 h. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.  相似文献   

10.
The effect of overall oxygen mass transfer coefficient (kLa) on the conversion of xylose to xylitol by Candida guilliermondii FTI 20037 was investigated in batch experiments. Rice straw hemicellulose hydrolysate obtained by acid hydrolysis was employed as a xylose-rich medium. The results showed that this bioconversion strongly depended on the aeration rate. The maximum volumetric productivity (0.52 g/l hу) and the highest xylitol yield (0.73 g/g) were achieved at an overall oxygen mass transfer coefficient of 15 hу. Under these conditions 80% efficiency in relation to theoretical yield was attained.  相似文献   

11.
【目的】肌醇别名环己六醇,是一种具有生物活性的糖醇,在医药、食品和饲料等领域具有重要的应用价值。为获得生产肌醇的微生物细胞工厂,通过代谢工程改造,构建生产肌醇的酿酒酵母工程菌株。【方法】对酿酒酵母肌醇合成途径的正负调控同时改造,过表达肌醇-3-磷酸合成酶基因ino1,敲除肌醇生物合成的转录抑制子基因opi1和抗性基因kan MX,获得重组菌。利用气相色谱法检测重组菌发酵液中肌醇含量。【结果】构建了生物安全性的产肌醇基因工程菌株,摇瓶培养产量为1.021 g/L。【结论】通过过表达ino1和敲除opi1来改造酿酒酵母,能够有效提高重组菌的肌醇产量,为下一步的微生物发酵法产肌醇的工业应用奠定基础。  相似文献   

12.
Microbial oil production from sulphuric acid treated rice straw hydrolysate (SARSH) by Trichosporon fermentans was performed for the first time. Fermentation of SARSH without detoxification gave a poor lipid yield of 1.7 g/l, which was much lower than the result with glucose or xylose as the single carbon source (13.6 g/l or 9.9 g/l). The detoxification pretreatment, including overliming, concentration, and adsorption by Amberlite XAD-4 improved the fermentability of SARSH significantly by removing the inhibitors in SARSH. A total biomass of 28.6 g/l with a lipid content of 40.1% (corresponding to a lipid yield of 11.5 g/l) could be achieved after cultivation of T. fermentans on the detoxified SARSH for 8 days. Moreover, besides SARSH, T. fermentans could also utilize mannose, galactose, or cellobiose, in hydrolysates of other natural lignocellulosic materials as the single carbon source to grow and accumulate lipid with a high yield (at least 10.4 g/l). Hence, it is a promising strain for microbial oil production and thus biodiesel preparation from agro-industrial residues, especially lignocellulosic materials.  相似文献   

13.
Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l–1). After 54 h, xylitol production from 30.5 g xylose l–1 reached 27.5 g l–1, resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g–1 and a productivity of 0.5 g l–1 h–1.  相似文献   

14.
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g?1, 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.  相似文献   

15.
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes of Panax ginseng, together with a NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana, were introduced into Saccharomyces cerevisiae, resulting in production of 0.05 mg/g DCW protopanaxadiol. Increasing squalene and 2,3-oxidosqualene supplies through overexpressing truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, farnesyl diphosphate synthase, squalene synthase and 2,3-oxidosqualene synthase genes, together with increasing protopanaxadiol synthase activity through codon optimization, led to 262-fold increase of protopanaxadiol production. Finally, using two-phase extractive fermentation resulted in production of 8.40 mg/g DCW protopanaxadiol (1189 mg/L), together with 10.94 mg/g DCW dammarenediol-II (1548 mg/L). The yeast strains engineered in this work can serve as the basis for creating an alternative way for production of ginsenosides in place of extraction from plant sources.  相似文献   

16.
Applied Microbiology and Biotechnology - Saccharomyces cerevisiae is a work horse for production of valuable biofuels and biochemicals including 2,3-butanediol (2,3-BDO), a platform chemical with...  相似文献   

17.
18.
Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (?ade3 ?bna2 ?tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity.  相似文献   

19.
Fourteen assays were conducted to study the influence of different variables, namely xylose concentration, inoculum level, agitation speed and nutrient supplementation, on xylitol biosynthesis by Candida guilliermondii FTI 20037. The maximum predicted values for xylitol yield (0.65 g g–1) and xylitol productivity (0.66 g l–1 h–1) can be attained with rice straw hydrolysate containing 60 g xylose l–1 without supplementation of ammonium sulfate, calcium chloride and rice bran extract, using 5 g inoculum l–1, at 250 rpm. Xylose concentration and inoculum level were selected for further optimization studies.  相似文献   

20.
Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L?1, 0.99 g L?1, and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L?1 hr?1, respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号