首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhomboid proteases form one of the most widespread intramembrane protease families. They have been implicated in variety of human diseases. The currently reported rhomboid inhibitors display some selectivity, but their construction involves multistep synthesis protocols. Here, we report benzoxazin-4-ones as novel inhibitors of rhomboid proteases with a covalent, but slow reversible inhibition mechanism. Benzoxazin-4-ones can be synthesized from anthranilic acid derivatives in a one-step synthesis, making them easily accessible. We demonstrate that an alkoxy substituent at the 2-position is crucial for potency and results in low micromolar inhibitors of rhomboid proteases. Hence, we expect that these compounds will allow rapid synthesis and optimization of inhibitors of rhomboids from different organisms.  相似文献   

2.
Hepatitis C infection is a cause of chronic liver diseases such as cirrhosis and carcinoma. The current therapy for hepatitis C has limited efficacy and low tolerance. The HCV encodes a serine protease which is critical for viral replication, and few protease inhibitors are currently on the market. In this paper, we describe the synthesis and screening of novel isosorbide-based peptidomimetic inhibitors, in which the compounds 1d, 1e, and 1i showed significant inhibition of the protease activity in vitro at 100 µM. The compound 1e also showed dose-response (IC50 = 36 ± 3 µM) and inhibited the protease mutants D168A and V170A at 100 µM, indicating it as a promising inhibitor of the HCV NS3/4A protease. Our molecular modeling studies suggest that the activity of 1e is associated with a change in the interactions of S2 and S4 subsites, since that the increased flexibility favors a decrease in activity against D168A, whereas the appearance of a hydrophobic cavity in the S4 subsite increase the inhibition against V170A strain.  相似文献   

3.
Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease.  相似文献   

4.
Poly (ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear protein that plays important roles in a variety of nuclear processes, and it has been proved a prominent target in oncology for its key function in DNA damage repair. In this study, we discovered a series of naphthacemycins as a new class of PARP1 inhibitors from a microbial metabolites library via high-throughput screening. Compound I, one of this series of compounds, could reduce cellular poly (ADP-ribose) level, trap PARP1 on the damaged DNA and elevate the level of γ-H2AX, and showed the selective cytotoxicity against BRCA1-deficient cell line. Our study provided a potential scaffold for the development of new PARP1 inhibitors in cancer therapy.  相似文献   

5.
Novel thienoquinoline carboxamide-chalcone derivatives were prepared via the cyclization of acylated chalcones and 2-mercaptoquinoline-3-carbaldehyde in DMF with K2CO3. Thienoquinolines 9a–f, h exhibited promising antiproliferative effect against all the tested cell lines and gave a significant activity as EGFR inhibitors, with IC50 values ranging from 0.5 and 3.2?µM, and compounds 9e and 9f being the most active of the series. They also showed better activity than Erlotinib against melanoma cancer cell line A375. Moreover, compound 9f influenced pre G1 apoptosis and cell cycle arrest at G2/M phase. The binding mode of the best EGFR inhibitor 9e in the EGFR active site revealed that the thienoquinoline ring occupied the ATP-binding site while the chalcone moiety is located in the allosteric site and is responsible for the enhanced activity of these compounds.  相似文献   

6.
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR–TK inhibitory activity. Especially, N6-((5-bromothiophen-2-yl)methyl)-N4-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50 = 3.11 μM for Hep G2, IC50 = 0.82 μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells.  相似文献   

7.
In this study, we identified water-soluble C60 and C70 fullerene derivatives as a novel class of protein tyrosine phosphatase inhibitors. The evaluated compounds were found to inhibit CD45, PTP1B, TC-PTP, SHP2, and PTPβ with IC50 values in the low micromolar to high nanomolar range. These results demonstrate a new strategy for designing effective nanoscale protein tyrosine phosphatase inhibitors.  相似文献   

8.
The xanthine oxidase (XO) plays an important role in producing uric acid, and therefore XO inhibitors are considered as one of the promising therapies for hyperuricemia and gout. We have previously reported a series of XO inhibitors with pyrazole scaffold to extend the chemical space of current XO inhibitors. Herein, we describe further structural optimization to explore the optimal heterocycle by replacing the thiazole ring of Febuxostat with 5 heterocycle scaffolds unexplored in this field. All of these efforts resulted in the identification of compound 8, a potent XO inhibitor (IC50?=?48.6?nM) with novel 2-phenylthiazole-4-carboxylic acid scaffold. Moreover, lead compound 8 exhibited hypouricemic effect in potassium oxonate-hypoxanthine-induced hyperuricemic mice. These results promote the understanding of ligand-receptor interaction and might help to design more promising XO inhibitors.  相似文献   

9.
Various pyridopyridazinone derivatives were designed as Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The pyridopyridazinone scaffold was used as an isostere of the phthalazine nucleus of the lead compound Olaparib in addition to some modifications in the tail part of the molecule. Preliminary biological evaluation indicated that most compounds possessed inhibitory potencies comparable to Olaparib in nanomolar level. The best PARP-1 inhibitory activity was observed for compound 8a with (IC50 = 36 nM) compared to Olaparib as a reference drug (IC50 = 34 nM). Molecular modeling simulation revealed that, the designed compounds docked well into PARP-1 active site and their complexes are stabilized by three key hydrogen bond interactions with both Gly863 and Ser904 as well as other favorable π-π and hydrogen-π stacking interactions with Tyr907 and Tyr896, respectively. Computational ADME study predicted that the target compounds 8a and 8e have proper pharmacokinetic and drug-likeness properties. These outcomes afford a new structural framework for the design of novel inhibitors for PARP-1.  相似文献   

10.
The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.  相似文献   

11.
In this Letter, we describe the synthesis of several nonamidine analogs of biaryl acid factor VIIa inhibitor 1 containing weakly basic or nonbasic P1 groups. 2-Aminoisoquinoline was found to be an excellent surrogate for the benzamidine group (compound 2) wherein potent inhibition of factor VIIa is maintained relative to most other related serine proteases. In an unanticipated result, the m-benzamide P1 (compounds 21a and 21b) proved to be a viable benzamidine replacement, albeit with a 20–40 fold loss in potency against factor VIIa.  相似文献   

12.
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range.  相似文献   

13.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

14.
Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50?=?1.52?μM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50?=?0.15, 0.21, 0.33 and 0.17?μM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.  相似文献   

15.
Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7 g exhibited the most inhibitory activity against c-Met with IC50 of 53.4 nM and 253 nM in enzymatic and cellular level, respectively. Following that, the compound 7 g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7 g was a potential c-Met inhibitor deserving further investigation for cancer treatment.  相似文献   

16.
17.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

18.
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. Some of them showed significant antibacterial activity against Gram-positive organism, Gram-negative organism and fungus. Out of these compounds, 4-(2-(3-chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0 μg/mL against Staphylococcus aureus, 4.3 μg/mL against Escherichia coli, 1.5 μg/mL against Pseudomonas aeruginosa and 1.2 μg/mL against Candida albicans. Our data disclosed that MIC50 values against whole cell bacteria are positive correlation with MIC50 values against tyrosyl-tRNA synthetase. Meanwhile, molecular docking of d40 into S. aureus tyrosyl-tRNA synthetase active site was also performed, and the inhibitor tightly fitting the active site might be an important reason why it has high antimicrobial activity.  相似文献   

19.
Сalix[4]arenes bearing methylenebisphosphonic or hydroxymethylenebisphosphonic acid fragments at the wide rim of the macrocycle were studied as inhibitors of PTP1B. Some of the inhibitors showed IC50 values in the micromolar range and good selectivity in comparison with other protein tyrosine phosphatases such as TC-PTP, PTPβ, LAR, and CD45. Kinetic studies indicated that the calix[4]arene derivatives influence PTP1B activity as slow-binding inhibitors. Based on molecular docking results, the binding modes of the macrocyclic bisphosphonates in the active centre of PTP1B are discussed.  相似文献   

20.
A series of di-indolinone derivatives was designed and synthesized to optimize our lead compounds basing on molecular docking study as PTP1B inhibitors. Successive enzymatic assay identified the synthetic di-indolinone as novel PTP1B inhibitors with low micromole-ranged inhibitory activity and at least several-fold selectivity over other tested homologous PTPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号