首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

2.
Diabetes a non-communicable disease occurs either due to the lack of insulin or the inability of the human body to recognize it. The recent data indicated an increase in the trend of people diagnosed with type 2 diabetes mainly due to unhealthy life style. Here in we report a new class of oxindole derivatives 6a-kvia scaffold hopping of known α-glucosidase inhibitors 14. When molecular docking was performed against a homology model of α-glucosidase the resulting compound 6d revealed binding interactions comparable to 14. The compounds were accessed through a unique condensation-ring opening protocol of pyridofuranone building blocks. Overall the compounds exhibited decent binding to the yeast α-glucosidase, where the most potent compound 6h, inhibited the enzyme with IC50 of 0.6?µM. This was nearly threefold improvement from the original known compounds 14, selected to design the newer analogs. The reaction kinetics of 6h indicated competitive inhibition.  相似文献   

3.
A novel series of chromone-isatin derivatives 6a6p were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. These novel synthetic compounds were evaluated for inhibitory activity against yeast α-glucosidase enzyme. The results of biological test have shown that all tested compounds exhibited excellent to potent inhibitory activity in the range of IC50?=?3.18?±?0.12–16.59?±?0.17?μM as compared to the standard drug acarbose (IC50?=?817.38?±?6.27?μM). Compound 6j (IC50?=?3.18?±?0.12?μM) with a hydroxyl group at the 7-position of chromone and a 4-bromobenzyl group at the N1-positions of isatin, was found to be the most active compound among the series. Furthermore, molecular docking study was performed to help understand binding interactions of the most active analogs with α-glucosidase enzyme. These results indicated that this class of compounds had potential for the development of anti-diabetic agents.  相似文献   

4.
Herein we report a study of novel arylchromene derivatives as analogs of naturally occurring flavonoids with prominent α-glucosidase inhibitory properties. Novel inhibitors were identified via simple stepwise in silico screening, efficient synthesis, and biological evaluation. It is shown that 2-aryl-4H-chromene core retains pharmacophore properties while being readily available synthetically. A lead compound identified through screening inhibits yeast α-glucosidase with IC50 of 62.26?µM and prevents postprandial hyperglycemia in rats at 2.2?mg/kg dose.  相似文献   

5.
A quantitative in situ assay of yeast α-glucosidase involving permeabilization of the cells by freezing and thawing is described. The assay was applied to different strains in different physiological states and was shown to give results comparable to those obtained with total cell homogenates. The primary advantage of the in situ assay was the possibility of analyzing a large number of samples from the same culture during a growth curve using a very reduced cell mass.  相似文献   

6.
Tumor necrosis factor-α is an important pro-inflammatory cytokine having a key role in hosts defensive process of immune systems and its over expression led to a diverse range of inflammatory diseases such as Rheumatoid arthritis, Cronh’s disease, psoriasis, etc. This paper describes our medicinal chemistry efforts on imidazo[1,2-b]pyridazine scaffold: design, synthesis and biological evaluation. By the introducing sulfonamide functionality at 3 positions and substituting 6 positions with (hetero)-aryl groups’, a small library of compounds was prepared. All synthesized compounds were screened for lipopolysaccharide (LPS) mediated TNF-α production inhibitory activity. Biological data revealed that the majority of the compounds of this series showed moderate to potent TNF-α production inhibitory activity. Compound 5u and 5v are the most potent compounds from the series with activity of IC50?=?0.5?µM and 0.3?µM respectively. A short SAR demonstrates that 3-sulfonyl-4-arylpiperidine-4-carbonitrile moiety on imidazo[1,2-b]pyridazine showed better activity compared to the 3-(4-aryllpiperazin-1-yl) sulfonyl) in hPBMC assay. The molecular modeling studies revealed that the potent TNF-α production inhibitory activity 5v due to the extra stability of complex because of an extra pi-pi (π-π) stacking, hydrogen-bonding interactions.  相似文献   

7.

Background

Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-β (Aβ) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy.

Methods

We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation.

Results

Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for β-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates.

Conclusions

We found that PC possesses “dual functionality” towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils.

General significance

The “dual functionality” of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.  相似文献   

8.

Background

Salsolinol (SALSO), a product from the reaction of dopamine (DA) with acetaldehyde, is found increased in dopaminergic neurons of Parkinson's disease (PD) patients. The administration of SALSO in rats causes myenteric neurodegeneration followed by the formation of deposits of the protein α-synuclein (aS), whose aggregation is intimately associated to PD.

Methods

NMR, isothermal titration calorimetry and MS were used to evaluate the interaction of SALSO with aS. The toxicity of SALSO and in vitro-produced aS-SALSO species was evaluated on mesencephalic primary neurons from mice.

Results

SALSO, under oxidative conditions, stabilizes the monomeric state besides a minor population of oligomers of aS, resulting in a strong inhibition of the fibrillation process. SALSO does not promote any chemical modification of the protein. Instead, the interaction of SALSO with aS seems to occur via hydrophobic effect, likely mediated by the NAC (non-amyloid component) domain of the protein. aS-SALSO species were found to be innocuous on primary neurons, while SALSO alone induces apoptosis via caspase-3 activation. Importantly, exogenous aS monomer was capable of protecting neurons against SALSO toxicity irrespective whether the protein was co-administered with SALSO or added until 2?h after SALSO, as evidenced by DAPI and cleaved-caspase 3 assays. Similar protective action of aS was found by pre-incubating neurons with aS before the administration of SALSO.

Conclusions

Interaction of SALSO with aS leads to the formation of fibril-incompetent and innocuous adducts. SALSO toxicity is attenuated by aS monomer.

Significance

aS could exhibit a protective role against the neurotoxic effects of SALSO in dopaminergic neuron.  相似文献   

9.
Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.  相似文献   

10.
Here we report the synthesis and in vitro evaluation of 25 new quinolinyl analogues for α-synuclein aggregates. Three lead compounds were subsequently labeled with carbon-11 or fluorine-18 to directly assess their potency in a direct radioactive competitive binding assay ng both α-synuclein fibrils and tissue homogenates from Alzheimer’s disease (AD) cases. The modest binding affinities of these three radioligands toward α-synuclein were comparable with results from the Thioflavin T fluorescence assay. However, all three ligand also showed modest binding affinity to the AD homogenates and lack selectivity for α-synuclein. The structure–activity relationship data from these 25 analogues will provide useful information for design and synthesis of new compounds for imaging α-synuclein aggregation.  相似文献   

11.
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell–matrix mechanical interactions in 3-D culture models, tissue explants and living animals.  相似文献   

12.
Diabetes is one of the pre-dominant metabolic disorders all over the world. It is the prime reason of mortality and morbidity due to hyperglycemia which is link with numerus obstacles. Delaying absorption and digestion of carbohydrate has great therapeutic impact for governing postprandial hyperglycemia. Consequently, alpha glucosidase is one of the potential therapeutic approaches that reduce absorption of glucose and delay carbohydrate digestion hence maintaining blood glucose level. In this regard we have synthesized benzothiazole based oxadiazole in search of potent anti-diabetic agent as α-glucosidase Inhibitors. Benzothiazole based oxadiazole derivatives 123 have been synthesized, characterized by 1HNMR, 13CNMR, and MS and evaluated for α-glucosidase Inhibition. All analogs exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values ranging in between 0.5 ± 0.01–30.90 ± 0.70 μM when compared with the standard acarbose (IC50 = 866.30 ± 3.20 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.  相似文献   

13.
14.
Catenanes (interlocked circular DNA molecules) are the exclusive products of the bacteriophage λ integrative recombination reaction in vitro when the substrate is a supercoiled DNA molecule containing both the attP and attB sites. It is proposed that the catenation results from the superhelical form of the substrate DNA. We also show that both circular DNA products of a single recombination event can be recovered as superhelical molecules with a superhelical density approximately that of the substrate DNA. The recombination reaction must therefore occur as a coupled process which does not permit free rotation around single-strand breaks at any stage.  相似文献   

15.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

16.
The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of 3H from 3H2O into fatty acids and cholesterol. Brain homogenates of suckling rats (but not those of adults) incorporated label from [3-14C]ketone bodies into lipids, but this process was slow as compared to 14CO2 production (< 5%) and much slower than the total rate of ketone-body utilization (< 0.5%). Study of 3H2O incorporation demonstrated that the rates of lipogenesis and cholesterogenesis are at least one order of magnitude higher in vivo than in vitro. Maximal rates of 3H incorporation into fatty acids (3 μmol/g brain . h) and into cholesterol (0.6 μmol/g brain . h) were found during the third postnatal week. Adult rats still incorporated 3H into brain fatty acids at an appreciable rate (1 μmol/g brain . h), whereas cholesterogenesis was very low. It is concluded that in vitro measurements of lipid synthesis severely underestimate the rates that occur in developing rat brain in vivo. The high rate of 3H incorporation into lipids by developing and adult rat brain as compared to the amounts of these lipids present in the brain suggests an important contribution of endogenous lipid synthesis during brain development and an appreciable rate of fatty acid turnover during brain growth, but also in the adult brain.  相似文献   

17.
Actin-binding protein anillin (ANLN) is primarily involved in the cytokinesis and known to be dysregulated in many cancers including gastric cancer (GC). However, the regulation and clinical significance of ANLN in GC are far less clear. In the present study, we aimed to investigate the clinical significance and possible regulators of ANLN in GC. We have identified the Wnt/β-catenin associated regulation of ANLN by analyzing the in vitro perturbed β-catenin mRNA expression profiles. Investigating the gastric tumors from publicly available genome-wide mRNA expression profiles, we have identified the over expression of ANLN in gastric tumors. Association between ANLN expression and clinical characteristics of GC showed elevated expression in intestinal type GC. Performing a single sample prediction method across GC mRNA expression profiles, we have identified the over expression of ANLN in proliferative type gastric tumors compared to the invasive and metabolic type gastric tumors. In silico pathway prediction analysis revealed the association between Wnt/β-catenin signaling and ANLN expression in gastric tumors. Our results highlight that expression of a Wnt/β-catenin responsive gene ANLN in GC is a molecular predictor of intestinal and proliferative type gastric tumors.  相似文献   

18.
Neutrophils’ adhesion to the endothelium during inflammatory is a well-known processes. In contrast the interaction of neutrophils with cells of the neurovascular unit after they have been transmigrated into the brain is less clear. Recently, lymphocyte function-associated antigen-1 (LFA-1) dependent subendothelial crawling of neutrophils has been observed in vivo. This is mediated by intracellular adhesion molecule-1 (ICAM-1), which is expressed on the cell surface of pericytes. In our work we demonstrated in vitro a cell–cell interaction between porcine brain capillary pericytes (PBCPs) and neutrophils, with further characterization of the initial contact between these cells. PBCPs increase ICAM-1 protein expression in response to the cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, an increase in neutrophil adhesion to PBCPs was determined by immunofluorescence staining. By means of scanning force microscopy (SFM), we could additionally show that pericytes as well as neutrophils form cell extensions towards the neighboring cell. Interestingly, these extensions differ for different cell types.  相似文献   

19.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

20.
The -glucosidase inhibitor acarbose, O-{4,6-dideoxy-4[1s-(1,4,6/5)-4,5,6-trihydroxy-3-hydroxymethyl-2-cyclohexen-1-yl]-amino--d-glucopyranosyl}-(14)-O--d-glucopyranosyl-(14)-d-glucopyranose, is produced in large-scale fermentation by the use of strains derived from Actinoplanes sp. SE50. It has been used since 1990 in many countries in the therapy of diabetes type II, in order to enable patients to better control blood sugar contents while living with starch-containing diets. Thus, it is one of the latest successful products of bacterial secondary metabolism to be introduced into the pharmaceutical world market. Cultures of Actinoplanes sp. also produce various other acarbose-like components, of which component C is hard to separate during downstream processing, which is one of the most modern work-up processes developed to date. The physiology, genetics and enzymology of acarbose biosynthesis and metabolism in the producer have been studied to some extent, leading to the proposal of a new pathway and metabolic cycle, the carbophore. These data could give clues for further biotechnological developments, such as the suppression of side-products, enzymological or biocombinatorial production of new metabolites and the engineering of production rates via genetic regulation in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号