首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of success in target-based screening approaches to the discovery of antibacterial agents has led to reemergence of phenotypic screening as a successful approach of identifying bioactive, antibacterial compounds. A challenge though with this route is then to identify the molecular target(s) and mechanism of action of the hits. This target identification, or deorphanization step, is often essential in further optimization and validation studies. Direct experimental identification of the molecular target of a screening hit is often complex, precisely because the properties and specificity of the hit are not yet optimized against that target, and so many false positives are often obtained. An alternative is to use computational, predictive, approaches to hypothesize a mechanism of action, which can then be validated in a more directed and efficient manner. Specifically here we present experimental validation of an in silico prediction from a large-scale screen performed against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. The two potent anti-tubercular compounds studied in this case, belonging to the tetrahydro-1,3,5-triazin-2-amine (THT) family, were predicted and confirmed to be an inhibitor of dihydrofolate reductase (DHFR), a known essential Mtb gene, and already clinically validated as a drug target. Given the large number of similar screening data sets shared amongst the community, this in vitro validation of these target predictions gives weight to computational approaches to establish the mechanism of action (MoA) of novel screening hit.  相似文献   

2.
3.
Mirković B  Sosič I  Gobec S  Kos J 《PloS one》2011,6(11):e27197

Background

Redox cycling compounds have been reported to cause false positive inhibition of proteases in drug discovery studies. This kind of false positives can lead to unusually high hit rates in high-throughput screening campaigns and require further analysis to distinguish true from false positive hits. Such follow-up studies are both time and resource consuming.

Methods and Findings

In this study we show that 5-aminoquinoline-8-ol is a time-dependent inactivator of cathepsin B with a kinact/KI of 36.7±13.6 M−1s−1 using enzyme kinetics. 5-Aminoquinoline-8-ol inhibited cathepsins H, L and B in the same concentration range, implying a non-specific mechanism of inhibition. Further analogues, 4-aminonaphthalene-1-ol and 4-aminophenol, also displayed time-dependent inhibition of cathepsin B with kinact/KI values of 406.4±10.8 and 36.5±1.3 M−1s−1. No inactivation occurred in the absence of either the amino or the hydroxyl group, suggesting that the 4-aminophenol moiety is a prerequisite for enzyme inactivation. Induction of redox oxygen species (ROS) by 4-aminophenols in various redox environments was determined by the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate. Addition of catalase to the assay buffer significantly abrogated the ROS signal, indicating that H2O2 is a component of the ROS induced by 4-aminophenols. Furthermore, using mass spectrometry, active site probe DCG-04 and isoelectric focusing we show that redox inactivation of cysteine cathepsins by 5-aminoquinoline-8-ol is active site directed and leads to the formation of sulfinic acid.

Conclusions

In this study we report that compounds containing the 4-aminophenol moiety inactivate cysteine cathepsins through a redox-based mechanism and are thus likely to cause false positive hits in the screening assays for cysteine proteases.  相似文献   

4.
Tsukii Y  Hiwatashi K 《Genetics》1985,111(4):779-794
Artificially induced intersyngenic crosses in Paramecium caudatum can produce viable and fertile hybrids. When F1 hybrids of double E mating type (Mt1/Mt3 or Mt12/Mt3) were crossed with mating type O (mt/mt), aberrant segregants of double E and single O type were produced. This segregation was not explained by ordinary equal or unequal crossing over. Breeding analyses of these segregants by using linkage between Mt and cnrA (a behavioral mutant) revealed that they were produced by meiotic nondisjunction of bivalent chromosomes carrying Mt genes, and thus the double E and single O segregants were aneuploids: trisomics ( Mt1/Mt3/mt or Mt 12/Mt3/mt) and monosomics (mt), respectively. An aberrant segregant was also obtained for another locus, tnd 2, independent of both Mt and cnrA, suggesting the occurrence of meiotic nondisjunction throughout hybrid genomes. These aneuploids will be useful for genetic study in this species. The occurrence of meiotic nondisjunction in the intersyngenic hybrids also suggests that syngens of P. caudatum have been reproductively isolated for long enough to develop chromosomal incompatibility in their meiotic process.  相似文献   

5.
Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease’s causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli’s nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG#, ΔS#, ΔH#) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH.  相似文献   

6.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

7.
The identification of new drugs for novel therapeutic targets requires the screening of libraries containing tens of thousands of compounds. While experimental screenings are assisted by high-throughput technologies, in target-based biophysical assays, such as differential scanning fluorimetry (DSF), the analysis steps must be calculated manually, often combining several software packages. To simplify the determination of the melting temperature (Tm) of the target and the change induced by ligand binding (ΔTm), we developed the HTSDSF explorer, a versatile, all-in-one, user-friendly application suite. Implemented as a server-client application, in the primary screenings, HTSDSF explorer pre-analyzes and displays the Tm and ΔTm results interactively, thereby allowing the user to study hundreds of conditions and select the primary hits in minutes. This application also allows the determination of preliminary binding constants (KD) through a series of subsequent dose–response assays on the primary hits, thereby facilitating the ranking of validated hits and the advance of drug discovery efforts.  相似文献   

8.
Using ligand and receptor based virtual screening approaches we have identified potential virtual screening hits targeting type II dehydroquinase from Mycobacterium tuberculosis, an effective and validated anti-mycobacterial target. Initially, we applied a virtual screening workflow based on a combination of 2D structural fingerprints, 3D pharmacophore and molecular docking to identify compounds that rigidly match specific aspects of ligand bioactive conformation. Subsequently, the resulting compounds were ranked and prioritized using receptor interaction fingerprint based scoring and quantitative structure activity relationship model developed using already known actives. The virtual screening hits prioritized belong to several classes of molecular scaffolds with several available substitution positions that could allow chemical modification to enhance binding affinity. Finally, identified hits may be useful to a medicinal chemist or combinatorial chemist to pick up the new molecular starting points for medicinal chemistry optimization for the design of novel type II dehydroquinase inhibitors.  相似文献   

9.
The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect-infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy.  相似文献   

10.
Mycobacterium tuberculosis (M. tuberculosis), the pathogen responsible for tuberculosis, detoxifies cytotoxic peroxides produced by activated macrophages. M. tuberculosis expresses alkyl hydroxyperoxide reductase E (AhpE), among other peroxiredoxins. So far the system that reduces AhpE was not known. We identified M. tuberculosis mycoredoxin-1 (MtMrx1) acting in combination with mycothiol and mycothiol disulfide reductase (MR), as a biologically relevant reducing system for MtAhpE. MtMrx1, a glutaredoxin-like, mycothiol-dependent oxidoreductase, directly reduces the oxidized form of MtAhpE, through a protein mixed disulfide with the N-terminal cysteine of MtMrx1 and the sulfenic acid derivative of the peroxidatic cysteine of MtAhpE. This disulfide is then reduced by the C-terminal cysteine in MtMrx1. Accordingly, MtAhpE catalyzes the oxidation of wt MtMrx1 by hydrogen peroxide but not of MtMrx1 lacking the C-terminal cysteine, confirming a dithiolic mechanism. Alternatively, oxidized MtAhpE forms a mixed disulfide with mycothiol, which in turn is reduced by MtMrx1 using a monothiolic mechanism. We demonstrated the H2O2-dependent NADPH oxidation catalyzed by MtAhpE in the presence of MR, Mrx1, and mycothiol. Disulfide formation involving mycothiol probably competes with the direct reduction by MtMrx1 in aqueous intracellular media, where mycothiol is present at millimolar concentrations. However, MtAhpE was found to be associated with the membrane fraction, and since mycothiol is hydrophilic, direct reduction by MtMrx1 might be favored. The results reported herein allow the rationalization of peroxide detoxification actions inferred for mycothiol, and more recently, for Mrx1 in cellular systems. We report the first molecular link between a thiol-dependent peroxidase and the mycothiol/Mrx1 pathway in Mycobacteria.  相似文献   

11.
Combinatorial chemistry offers a unique opportunity for the synthesis and screening of large numbers of compounds and significantly enhances the prospect of finding new drugs. Collaborative efforts with the Tuberculosis Antimicrobial Acquisition & Coordinating Facility (TAACF), have led to the identification of submicromolar novel antitubercular hits. Chiral pentaamines and bis-heterocyclic compounds with 90–100% inhibition against Mycobacterium tuberculosis strain H37Rv were identified. Some of the identified compounds are more active than the existing drug ethambutol.  相似文献   

12.
13.
Streptokinase (SK), the heterogeneous protein family secreted by some groups of β-hemolytic streptococci (βHS), is a plasminogen activator and well-known drug for thrombolytic therapy. Differences in plasminogen activation property of streptococcal culture supernatants (SCS) have been traditionally used to identify superior producer strains and SK genes (skc) for recombinant SK (rSK) production. However, the role of SK heterogeneity and whether SK activities in SCS correlate with that of their corresponding rSK is a matter of debate. To address these concerns, SCS of nine group C streptococci (GCS) screened among 252 βHS clinical isolates were compared for plasminogen activation using S-2251 chromogenic assay. The GCS (Streptococcus equisimilis) showing the highest (GCS-S87) and lowest (GCS-S131) activities were selected for PCR-based isolation of skc, cloning and rSK production in Escherichia coli. The 6×His-tagged rSK proteins were purified by NI–NTA chromatography, analyzed by SDS-PAGE and Western blotting and their activities were determined. While SCS of GCS-S87 and GCS-S131 showed different plasminogen activations (95 and 35 %, respectively) compared to that of the reference strain (GCS-9542), but interestingly rSK of all three strains showed close specific activities (1.33, 1.70, and 1.55 × 104 IU mg?1). Accordingly, SKS87 and SKS131 had more than 90 % sequence identity at the amino acids level compared to SK9542. Therefore, SK heterogeneity by itself may not contribute to the differences in plasminogen activation properties of SCS and evaluation of this activity in SCS might not be a proper assay for screening superior skc.  相似文献   

14.
The discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P. falciparum gametocytes, the parasite stage responsible for transmission. This study reports screening results for the Tres Cantos Antimalarial Set (TCAMS), of approximately 13,533 molecules, against P. falciparum stage V gametocytes. Secondary confirmation and cytotoxicity assays led to the identification of 98 selective molecules with dual activity against gametocytes and asexual stages. Hit compounds were chemically clustered and analyzed for appropriate physicochemical properties. The TCAMS chemical space around the prioritized hits was also studied. A selection of hit compounds was assessed ex vivo in the standard membrane feeding assay and demonstrated complete block in transmission. As a result of this effort, new chemical structures not connected to previously described antimalarials have been identified. This new set of compounds may serve as starting points for future drug discovery programs as well as tool compounds for identifying new modes of action involved in malaria transmission.  相似文献   

15.
Mass spectrometry is an emerging format for label-free high-throughput screening. The main limitation of mass spectrometry is throughput, due to the requirement to purify samples prior to ionization. Here the authors compare an automated high-throughput mass spectrometry (HTMS) system (RapidFire) with the scintillation proximity assay (SPA). The cancer therapy target AKT1/PKBalpha was screened against a focused library of kinase inhibitors and IC50 values determined for all compounds that exhibit > 50% inhibition. A selection of additional compounds that exhibited 相似文献   

16.
Generation and screening of oxime libraries by competitive MS Binding Assays represents a powerful tool for the identification of new compounds, with affinity to mGAT1, the most abundant plasma membrane bound GABA transporter in the CNS. By screening a guvacine derived oxime library, new potent inhibitors of mGAT1 had been revealed. In the present study, oxime libraries generated by reaction of a large excess of a rac-nipecotic acid derivative displaying a hydroxylamine functionality in which various aldehydes under suitable conditions, were examined for new potent inhibitors of mGAT1. The pKi values obtained of the best hits were compared with those of related compounds displaying a guvacine instead of a nipecotic acid subunit as hydrophilic moiety. Amongst the new compounds one of the most affine ligands of mGAT1 known so far (pKi?=?8.55?±?0.04) was found.  相似文献   

17.
The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.  相似文献   

18.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

19.
The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods—saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301 μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14 μM to 700 μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme.  相似文献   

20.
Butyrylcholinesterase (BChE) is recently considered as a new target for the treatment of Alzheimer’s disease (AD). There is an increasing interest in the development of BChE inhibitors. In the present study, a set of pharmacophore models for BChE was developed and validated. Based on the models, virtual screening was performed on five compound collections, from which seventeen potential hits were retained for biological investigation. In total, eight of these seventeen potential hits showed selective BChE inhibitory activity. Moreover, four compounds displayed IC50 values in sub-micromolar range on eqBChE and three displayed IC50 values < 2 μM on huBChE. The diverse scaffolds of the active compounds provided good starting point further development of selective BChE inhibitors. As far as we concerned, here we disclose the first selective pharmacophore model targeting BChE. The high rate of the model in the identification of active hits indicates it is a valuable tool for the development of selective BChE inhibitors, which may benefit the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号