首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel series of 5-nitro-2-phenoxybenzoic acid derivatives are designed as potent PAI-1 inhibitors using hybridization and conformational restriction strategy in the tiplaxtinin and piperazine chemo types. The lead compounds 5a, 6c, and 6e exhibited potent PAI-1 inhibitory activity and favorable oral bioavailability in the rodents.  相似文献   

2.
Six new azo dyes containing of 5(4H)-oxazolone ring were prepared by diazotization of 4-aminohippuric acid and coupling with N,N-dimethylaniline, 1-naphthol and 2-naphthol and condensation with 4-fluoro benzaldehyde or 4-trifluoromethoxy benzaldehyde. The new compounds were fully characterized by spectroscopic techniques. All synthesized compounds exhibited high tyrosinase inhibitory behavior. The results of mushroom tyrosinase inhibition assays indicate that the 4-trifluoromethoxy derivatives have high degrees of inhibition and N,N-dimethylaniline derivatives are better for tyrosinase inhibition than 1-naphthol and 2-naphthol derivatives. All synthesized azo compounds (4a4f) showed the most potent mushroom tyrosinase inhibition, comparable to that of Kojic acid and l-mimosine, as reference standard inhibitors.  相似文献   

3.
In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified.  相似文献   

4.
The natural product embelin was found to have PAI-1 inhibitory activity with the IC50 value of 4.94 μM. Based on the structure of embelin, a series of analogues were designed, synthesized, and evaluated for their ability to inhibit PAI-1. The SAR study on these compounds disclosed that the inhibitory potency largely depended on the hydroxyl groups at C2 and C5, and the length of the alkyl chains at C3 and C6. Compound 11 displayed the best PAI-1 inhibitory potency with the IC50 value of 0.18 μM.  相似文献   

5.
The following new compounds were prepared and characterized: N-benzyl-oxycarbonyl-O-(tetra-O-acetyl-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (1) and L-threonine methyl ester (2), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-serine amide (3), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-threonine methyl ester (4) and L-threonine amide (5), N-benzyloxycarbonyl-O-(tri-O-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (6), and N-benzyloxycarbonyl-O-(2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine amide (7). Although various modifications of the Koenigs-Knorr synthesis were used, the best, over-all yields of the deacetylated dipeptide derivatives were only 5–10%. Although the products are alkali-labile, deacetylation was accomplished with methanolic ammonia. Of the deacetylated products, the threonine derivatives (4 and 5) were more rapidly hydrolyzed by acids than phenyl β-D-glucopyranoside, which in turn was more rapidly cleaved than the serine derivatives (3 and 7). The stabilities of 3, 4, 5, and 7 to sodium hydroxide and sodium borohydride were similar, and essentially complete β-elimination of the glycosyl residue occurred for the amide derivatives (3, 5, and 7). For the ester derivative 4, pH 9 was optimal; above this pH, ester hydrolysis was more rapid than β-elimination, and the resulting carboxyl derivatives did not undergo β-elimination. Under optimal conditions with sodium borohydride, the β-elimination reaction was complete, but the corresponding alanine and α-aminobutyric acid residues were not formed; presumably reductions to the amino alcohols occurred. A mechanism for the β-elimination is proposed.  相似文献   

6.
Five 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d-glucopyranoses (lipophilic, muramoyl dipeptide analogs) were synthesized from benzyl 2-(benzyloxycarbonylamino)-3-O-(d-1-carboxyethyl)-2-deoxy-5,6-O-isopropylidene-β-dglucopyranoside (1). Methanesulfonylation of 3, derived from the methyl ester of 1 by O-deisopropylidenation, gave the 6-methanesulfonate (4). (Tetrahydropyran-2-yl)ation of 4 gave benzyl 2-(benzyloxycarbonylamino)-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-6-O-(methylsulfonyl)-5-O-(tetrahydropyran-2-yl)-β-d- glucofuranoside, which was treated with sodium azide to give the corresponding 6-azido derivative (6). Condensation of benzyl 6-amino-2-(benzyloxycarbonyl-amino)-2,6-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-5-O-(tetrahydropyran-2-yl)-β-d-glucofuranoside, derived from 6 by reduction, with the activated esters of octanoic, hexadecanoic, and eicosanoic acid gave the corresponding 6-N-fatty acyl derivatives (8–10). Coupling of the 2-amino derivatives, obtained from compounds 8, 9, and 10 by catalytic reduction, with the activated esters of the fatty acids, gave the 2,6-(diacylamino)-2,6-dideoxy derivatives (11–15). Condensation of the acids, formed from 11–15 by de-esterification, with the benzyl ester of l-alanyl-d-isoglutamine, and subsequent hydrolysis, afforded benzyl 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine benzyl ester)-β-d-glucofuranosides. Hydrogenation of the dipeptide derivatives thus obtained gave the five lipophilic analogs of 6-amino-6-deoxymuramoyl dipeptide, respectively, in good yields.  相似文献   

7.
We describe in this Letter a new synthetic method for pyrrolin-2-ones as potent plasminogen activator inhibitor-1 (PAI-1) inhibitors. Pyrrolin-2-one derivatives synthesized from N-2-oxoethylamides and aldehydes in aqueous NaOH by one-pot were evaluated for their PAI-1 inhibitory activity. Among these derivatives, compounds 16 and 18 were found to possess potent PAI-1 inhibitory activity (compound 16: IC50: 0.69 μM, compound 18: IC50: 0.65 μM).  相似文献   

8.
Three new highly oxygenated chromene derivatives, oxirapentyns B–D (1–3) and one known oxirapentyn A (4) were isolated from the lipophilic extract of the marine-derived fungus Isaria felina KMM 4639. The structures of compounds 1–3 were determined based on spectroscopic methods. The absolute configuration of oxirapentyn B (1) as 2R, 4S, 5S, 6S, 7R, 8S, 9S was established by a combination of modified Mosher's method, X-ray analysis, and NOESY data. Oxirapentyn A (4) showed weak cytotoxicity against SK-Mel-5, SK-Mel-28 human malignant melanoma, and T-47D human breast cancer cell lines.  相似文献   

9.
In order to obtain PDHc-E1 inhibitors with high selectivity and efficacy, four series (7, 12, 15, and 19) of 35 novel 4-aminopyrimidine derivatives were rationally designed and synthesized based on the binding site of ThDP in E. coli PDHc-E1. 12, 15, and 19 were confirmed to be potent inhibitors against E. coli PDHc-E1. Selected compounds 12g, 12i, 15f, and 19a showed negligible inhibition against porcine PDHc-E1. To understand their selectivity, the interaction of inhibitor and E. coli PDHc-E1 or porcine PDHc-E1 was studied by molecular docking. The newly introduced acylhydrazone and N-phenylbenzamide moieties could form stronger interaction by hydrogen bond at the active site of E. coli PDHc-E1 compared with that of porcine PDHc-E1. A part of title compounds as potent PDHc-E1 inhibitors also exhibited notable antibacterial activity. In particular, 12e, 12f, 12g, 12o, and 19a exhibited 72–92% inhibition against Xanthomonas oryzae pv. Oryzae and Ralstonia solanacearum at 100?μg/mL, which was better than thiodiazole-copper (34 and 29%, respectively) and bismerthiazol (56 and 55%, respectively). The results proved that we could obtain effective bactericidal compounds as highly selective PDHc inhibitors by rational molecular design utilizing the binding model of active site of E. coli PDHc-E1.  相似文献   

10.
A series of N-acyl derivatives of tyramine, tryptamine, and serotonin were synthesized and tested on anti-melanogenic activity. The serotonin derivatives such as N-caffeoylserotonin (3) and N-protocatechuoylserotonin (9) were inhibitory to tyrosinase from mouse B16 and human HMV-II melanoma cells, while the corresponding derivatives of tryptamine and 5-methoxytryptamine were almost inactive or less active than the serotonin derivatives. The inhibitory activity of the serotonin derivatives increased with increasing number of phenolic hydroxyl groups in the acyl moiety. Melanin formation in the culture of B16 cells was suppressed by 3 and 9 with no cytotoxicity in the concentration range tested (IC50 = 15, 3 and 111 μM for 3, 9, and kojic acid, respectively). Thus the N-acylserotonin derivatives having a dihydroxyphenyl group are potential anti-melanogenic agents. Their inhibition of tyrosinase is primarily performed through the 5-hydroxyindole moiety and further strengthened by the phenolic hydroxyl groups in the acyl moiety.  相似文献   

11.
A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N′-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N′-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours π–π stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 μM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.  相似文献   

12.
A novel series of N-methylmaleimide indolocarbazole derivatives bearing modified 2-acetamino acid moieties are first reported. The cytotoxic effects of these compounds were tested in five human tumor cell lines. The potent compounds 9a, 9b, 9d, and 9e have been further evaluated for their effect on Topoisomerase I (TOPO I) and cancer cell cycle. It is concluded that the indolocarbazoles with alkyl piperazine or morpholine substituent groups instead of esters or glycosyl residues would have better activities against tumors.  相似文献   

13.
A series of N,N′-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N1(N3)) and highly lipophilic substituents at the carbon atoms (C2 and C5(C6)) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute’s Developmental Therapeutics Program tested 1, 35, 10, 11, 1318, 2025, and 2830 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents.  相似文献   

14.
In this paper are reported the synthesis and antiprotozoal activity in vitro of 24 1-methylbenzimidazole derivatives (1336) substituted at position 2 with aminocarbonyl, N-methylaminocarbonyl, N,N-dimethylaminocarbonyl, ethoxycarbonyl, 1-hydroxyethyl and acetyl groups, some of them with chlorine atoms at the benzenoid ring. Compounds 1336 were more active than metronidazole, the choice drug against Giardia intestinalis and most of them against Trichomonas vaginalis. The most active group of compounds for both parasites was that with a 2-ethoxycarbonyl group (16, 22, 28, 34), independently of the substitution pattern at the benzenoid ring.  相似文献   

15.
Two series of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups were identified as competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors. Among the compounds studied, IIIv was found to have the best in vitro inhibition activity against PTP1B (IC50?=?0.67?±?0.09?µM) and the best selectivity (9-fold) between PTP1B and T-cell protein tyrosine phosphatase (TCPTP). Molecular docking studies demonstrated that compounds IIIm, IIIv and IVg could occupy simultaneously at both the catalytic site and the adjacent pTyr binding site. These results provide novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

16.
17.
As potential inhibitors of pyruvate dehydrogenase complex E1 (PDHc-E1), a series of 19 1-((4-amino-2-methylpyrimidin-5-yl)methyl)-5-methyl-N′-(substituent)benzylidene-1H-1,2,3-triazole-4-carbohydrazide 4 has been synthesized and tested for their PDHc-E1 inhibitory activity in vitro. Some of these compounds such as 4a, 4g, 4l, 4o, 4p, and 4q were demonstrated to be effective inhibitors by the bioassay of Escherichia coli PDHc-E1. SAR analysis indicated that the PDHc-E1 inhibitory activity could be further enhanced by optimizing the substituted groups in the parent compound. Molecular modeling study with compound 4o as a model was performed to evaluate docking. The results of modeling study suggested a probable inhibition mechanism.  相似文献   

18.
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.  相似文献   

19.
Prumycin (1) and related compounds have been synthesized from benzyl 2-(benzyloxycarbonyl)amino-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (4). Benzoylation of 4, followed by deisopropylidenation, gave benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-β-d-glucofuranoside (6), which was converted, via oxidative cleavage at C-5–C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (7). Benzylation of 3-O-benzoyl-2-(benzyloxycarbonyl)-amino-2-deoxy-d-xylopyranose (8), derived from 7 by hydrolysis, afforded the corresponding derivatives (9, 11) of β- and α-d-xylopyranoside, and compound 7 as a minor product. Treatment of benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-4-O-mesyl-β-d-xylopyranoside 10, formed by mesylation of 9, with sodium azide in N,N-dimethylformamide gave benzyl 4-azido-3-O-benzoyl-2-(benzyloxy-carbonyl)amino-2,4-dideoxy-α-l-arabinopyranoside (13), which was debenzoylated to compound 14. Selective reduction of the azide group in 14, and condensation of the 4-amine with N-[N-(benzyloxycarbonyl)-d-alaninoyloxy]succinimide, gave the corresponding derivative (15) of 1. Reductive removal of the protecting groups of 15 afforded 1. Prumycin analogs were also synthesized from compound 14. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

20.
The lipophilic, cell-penetrating zinc chelator N,N,N′,N′,-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN, 1) and the zinc chelating procaspase-activating compound PAC-1 (2) both have been reported to induce apoptosis in various cell types. The relationship between apoptosis-inducing ability and zinc affinity (Kd), have been investigated with two new model compounds, ZnA-DPA (3) and ZnA-Pyr (4), and compared to that of TPEN and PAC-1. The zinc-chelating o-hydroxybenzylidene moiety in PAC-1 was replaced with a 2,2′-dipicoylamine (DPA) unit (ZnA-DPA, 3) and a 4-pyridoxyl unit (ZnA-Pyr, 4), rendering an order of zinc affinity TPEN > ZnA-Pyr > ZnA-DPA > PAC-1. The compounds were incubated with the rat pheochromocytoma cell line PC12 and cell death was measured in combination with ZnSO4, a caspase-3 inhibitor, or a ROS scavenger. The model compounds ZnA-DPA (3) and ZnA-Pyr (4) induced cell death at higher concentrations as compared to PAC-1 and TPEN, reflecting differences in lipophilicity and thereby cell-penetrating ability. Addition of ZnSO4 reduced cell death induced by ZnA-Pyr (4) more than for ZnA-DPA (3). The ability to induce cell death could be reversed for all compounds using a caspase-3-inhibitor, and most so for TPEN (1) and ZnA-Pyr (4). Reactive oxygen species (ROS), as monitored using dihydro-rhodamine (DHR), were involved in cell death induced by all compounds. These results indicate that the Zn-chelators ZnA-DPA (3) and ZnA-Pyr (4) exercise their apoptosis-inducing effect by mechanisms similar to TPEN (1) and PAC-1 (2), by chelation of zinc, caspase-3 activation, and ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号