首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic voltammograms of cis-diammineplatinum α-pyrrolidone-blue and -tan, [Pt4(NH3)8(C4H6NO)4]n+ (n = 5 and 6, respectively) show for either complex only one redox peak at 0.53 V (average potential of the anodic and cathodic peak potentials). Coulometry and UVVis spectra of bulk- electrolyzed solution indicated that the redox peak corresponds to the reaction [Pt4(NH3)8(C4H6NO)4]8+ + 4e ⇄ 2[Pt2(NH3)4(C4H6NO)2]2+. When cyclic voltammetry is carried out in a solution of [Pt4(NH3)8(C4H6NO)4]6+ or a platinum electrode adsorbed with [Pt4(NH3)8(C4H6NO)4]6+ is used in the presence of oxidizing agent in the solution, O2 gas generates from the electrode surface with large catalytic cathodic current at potentials below ca. 0.8 V. The O2 gas was confirmed to generate from water by GC-MS analysis. This abnormal O2 generation phenomenon is explained with cyclic reactions of chemical surface oxide formation on the electrode by the oxidizing agent and electrochemical reduction of the surface oxide. Oxygen gas generates from the reaction of [Pt4(NH3)8(C4H6NO)4]8+ or [Pt4(NH3)8(C4H6NO)4]6+ with OH produced in the course of the electrochemical reduction of the electrode surface oxide. The ability of [Pt4(NH3)8(C4H6NO)4]8+ and [Pt4(NH3)8(C4H6NO)4]6+ to oxidize OH into O2 has been reported previously.  相似文献   

2.
Jun Zhao  Li Xu 《Inorganica chimica acta》2008,361(8):2385-2395
A series of porous supramolecular complexes (Hoxine)2 · [Mo3O4(C2O4)3(H2O)3] · 5H2O (1),(Hphen)2 · [Mo3O4(C2O4)3(H2)3]  · 0.5C2H5OH · 7H2O (2), H2bpy · [Mo3O4(C2O4)3(H2O)3] · 2.5H2O (3), H2TTD · [Mo3O4(C2O4)3(H2O)3] · C2H5OH · 3H2O (4), (oxine = 8-hydroxyquinoline, phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine, TTD = triethylene diamine) have been prepared and characterized by single-crystal X-ray crystallography, elemental analysis and infrared spectroscopy. Self-assembly of [Mo3O4(C2O4)3(H2O)3]2− directed by H-bonding association between the coordination water molecules and oxalate groups forms 2-D host H-bonded single layer in 1, double layer in 2 and 3, and undulated layer in 4 depending on the nature of the guest protonated N-heterocycles. Unlike cis-Hoxine+ or Hphen+ that employs lattice water molecules H-bonded to them to interconnect the host layers, trans-H2bpy2+ or H2TTD2+ acts a linker between the neighboring host layers to form 3-D supramolecular frameworks with channeled structures wherein the guest protonated cations are located.  相似文献   

3.
Two structurally related vanadium(V) complexes, K3[VO2(C2O4)2]·3H2O and K3[VO(O2)(C2O4)2]·1/2H2O, were thoroughly characterized by infrared, Raman, and electronic spectroscopies. The effect of both complexes on the viability of the human MG-63 osteosarcoma cells was tested using the MTT assay. The monoperoxo complex shows a very strong antiproliferative activity (at 100-μM concentration, this complex diminished the cell viability ca. 80 %), whereas the dioxo complex was inactive.  相似文献   

4.
A novel organic-inorganic hybrid pentaborate [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 has been synthesized by hydrothermal reaction and characterized by FT-IR, Raman spectroscopy, elemental analyses and DTA-TGA. Its crystal structure was determined from single crystal X-ray diffraction. The structure consists of isolated polyborate anion [B5O6(OH)4] and nickel complex cation of [Ni(C4H10N2)(C2H8N2)2]2+, in which the two kinds of ligands come from the decomposition of triethylenetriamine material. The [B5O6(OH)4] units are connected to one another through hydrogen bonds, forming a three-dimensional framework with large channel along the a and c axes, in which the templating [Ni(C4H10N2)(C2H8N2)2]2+ cations are located. The assignments of the record FT-IR absorption frequencies and Raman shifts were given.  相似文献   

5.
A newly effective system was used to bleach ligno-cellulosic textile materials. This system is based on two different newly synthesized natrium oxo-diperoxo molybdates, Na2[MoO (O2)2(C2O4)] and Na2[MoO (O2)2(C6H6O7)].  相似文献   

6.
A series of aryldiazenido polyoxomolybdates of the type (nBu4N)2[Mo5O13(OMe)4(NNAr){Na(MeOH)}] (Ar = C6F5, 1; Ar = O2N-o-C6H4, 2; Ar = O2N-m-C6H4, 3; Ar = O2N-p-C6H4, 4a; Ar = (O2N)2-o,p-C6H3, 5) have been obtained by controlled degradation of the parent compounds (nBu4N)3[Mo6O18(NNAr)] with NaOH in methanol. They have been characterized by elemental analysis and UV-Vis and IR spectroscopy. In addition, 4a has been characterized by 95Mo NMR spectroscopy and the crystal structure of (nBu4N)2[Mo5O13(OMe)4(NNC6H4-p-NO2){Na(H2O))]·H2O (4b) has been determined by X-ray diffraction. The molecular structure of the anion of 4b features a lacunary Lindqvist-type anion [Mo5O13(OMe)4(NNC6H4-p-NO2)]3− interacting with a sodium cation through the four terminal axial oxygen atoms. The 1:1 sodium complexes react with BaCl2 and BiCl3 to yield 2:1 complexes which have been isolated as (nBu4N)4[Ba{Mo5O13(OMe)4(NNAr)}2] (Ar = C6F5, 6; Ar = O2N-p-C6H4, 7) and (nBu4N)3[Bi{Mo5O13(OMe)4(NNAr)}2] (Ar = C6F5, 8; Ar = O2N-p-C6H4, 9). X-ray crystallography analysis of 9·Me2CO has shown that the tetradentate [Mo5O13(OMe)4(N2C6H4-p-NO2)]3− anions provide a square-antiprismatic environment for Bi. In contrast, IR spectroscopy provides evidence for a square-prismatic environment of Ba in 6 and 7. In acetonitrile-methanol mixed solvent, [Mo5O13(OMe)4(NNAr)]3− and [PW11O39]7−, generated in situ by alkaline degradation of their respective parents, [Mo6O18(NNAr)]3− and [PW12O40]3−, react together to give the Keggin-type diazenido compounds (nBu4N)4[PW11O39(MoNNAr)] (Ar = O2N-o-C6H4, 10; Ar = O2N-m-C6H4, 11; Ar = O2N-p-C6H4, 12), which have been characterized by 31P and 183W NMR spectroscopy.  相似文献   

7.
The synthesis and crystal structure of four new copper(I) and copper(II) supramolecular amine, and amine phosphonate, complexes is reported. Reaction of copper(I) with 2-,9-dimethyl-1-10-phenanthroline (dmp) produced a stable 4-coordinate Cu(I) species, [Cu(I)(dmp)2]Cl · MeOH · 5H2O (2), i.e., the increased steric hindrance in the ‘bite’ area of dmp did not prevent interaction with the metal and provided protection against oxidation which was not possible for the phen analogue [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36]. Subsequent addition of phenylphosphonic acid to (2) produced two structures from alternative synthetic routes. An ‘in situ’ process yielded red block Cu(I) crystals, [Cu(I)(dmp)2] · [C6H5PO3H2 · C6H5PO3H] (4), whilst recrystallisation of (2) prior to addition of the acid (‘stepwise’ process) produced a green, needle-like Cu(II) complex, [Cu(II)(dmp) · (H2O)2 · C6H5PO2(OH)] [C6H5PO2(OH)] (3). However, addition of excess dmp during the ‘stepwise’ process forced the equilibrium towards product (4) and resulted in an optimum yield (99%). The structure of (4) was similar to the phen analogue, [Cu(II)Cl(phen)2] · [C6H5PO2(OH) · C6H5PO(OH)2] (1) [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36], but the presence of dmp exerted some influence on global packing, whilst (3) exists as a polymeric layered material. In contrast, reaction of copper(I) with di-2-pyridyl ketone (dpk), followed by phenylphosphonic acid produced purple/blue Cu(II) species, [Cu(II)(dpk · H2O)2] Cl2 · 4H2O (5), and [Cu(II)(dpk · H2O)2] · [C6H5PO2(OH)2 · C6H5PO(OH)2] (6), respectively, i.e., in both cases oxidation of copper occurred. Solid-state luminescence was observed in (2) and (4). The latter showing a 5-fold enhancement in intensity.  相似文献   

8.
LnIII[Ru2(CO3)4] · 8H2O (Ln = Gd, Nd, Ho, Yb) is formed from the reaction of LnIII and [Ru2(CO3)4]3? in water. These LnIII materials have a 3D network structure composed of linked chains and μn-CO3 linkages to both Ru and LnIII sites, and are best described as LnIII(OH2)4[Ru2(CO3)4]1/2[Ru2(CO3)4(OH2)2]1/2 · 3H2O. Complete characterization of the GdIII species is presented, as the other LnIII are isostructural and exhibit large spin–orbit coupling leading to complex magnetic behavior. Magnetic ordering is not observed above 2 K.  相似文献   

9.
The aqueous reaction of TiCl4 with citric acid at pH ∼ 4 (KOH), led to the surprising isolation of a species assembly K3[Ti(C6H6O7)2(C6H5O7)] · K4[Ti(C6H5O7)2(C6H6O7)] · 10H2O (1). The same system at pH ∼ 3 (neocuproine), led to the crystalline material (C14H13N2)2[Ti(C6H6O7)3] · 5H2O (2), while at pH 5.0 (NaOH), afforded Na3[Ti(C6H6O7)2(C6H5O7)] · 9H2O (3). Analytical, spectroscopic and structural characterization of 1, 2 and 3 revealed their distinct nature exemplified by mononuclear complexes bearing variably deprotonated citrates bound to Ti(IV). Solid-state 13C MAS NMR spectroscopy in concert with solution 13C and 1H NMR on 3 provided ample evidence for the existence of bound citrates of distinct coordination mode to the metal ion. Cyclic voltammetry defined the electrochemical signature of complex 2, thereby projecting the physicochemical profile of the species formulated by the aforementioned properties. Comparison of cyclic voltammetric data on available discrete Ti(IV)-citrate species depicts the electrochemical profile and an E1/2 value trend of the species in that binary system’s aqueous speciation, further substantiating the redox behavior of mononuclear Ti(IV)-citrate species in a pH-sensitive fashion. Collectively, the well-defined discrete species in 1-3 reflect and corroborate a synthetically challenging yet complex pH-specific picture of the aqueous Ti(IV) chemistry with the physiological citric acid, and shed light on the pH-dependent speciation in the binary Ti(IV)-citrate system.  相似文献   

10.
The hydrothermal reaction of the dimolybdenum(V) Na2[Mo2O3S(HNTA)2] · 6H2O (1) and the lanthanide(III) ion yield the neutral trimolybdenum(IV) heterometalic cluster, [(H2O)8NdMo3O3S(HNTA)2(NTA)] · 7H2O (2) (NTA = nitrilotriacetato ligand). The addition reaction of Ag+ and [Mo3O4(C2O4)3(H2O)3]2− affords the anionic heterometallic cluster in N(C2H5)4[Ag(H2O)3Mo3O4(C2O4)3(H2O)3] · 5H2O (3). The H-bonded self-assemblies of the resulting asymmetric and larger heterometallic clusters form the 2D layered structure and 3D supramolecular open framework in 2 and 3, respectively, with larger pores to be stabilized by water clusters. These water clusters appear as (H2O)4 and (H2O)18 in 2 and (H2O)22 in 3.  相似文献   

11.
Four new three-dimensional materials built from reduced molybdenum(V) phosphates as building blocks and transitional metal (Co, Zn and Cd) complexes as linkers, (Hbpy)2[Co(bpy)(H2O)]2[Co(H2PO4)2 (HPO4)6(MoO2)12(OH)6] (1), [Co(H2O)4]2[Co(Hbpy)(H2O)]2[Co(bpy)][Co(HPO4)4(PO4)4(MoO2)12(OH)6] · 6H2O (2), Na2[Zn(Hbpy)(H2O)2]2[Zn(Hbpy)]2[Zn(HPO4)2(PO4)6(MoO2)12(OH)6] · 4H2O (3), (H2bpy)2[Cd(bpy)(H2O)]2[Cd(bpy)(H2O)2]2[Cd(HPO4)4(PO4)4(MoO2)12(OH)6] · 2H2O (4) (bpy = 4,4′-bipyridine), have been synthesized and characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction. The 3-D framework of 1 is constructed from Co[P4Mo6]2 dimers bonded together with [Co(bpy)]n coordination polymer chains. In compound 2, the Co[P4Mo6]2 dimers are linked by both [Co(bpy)] complex chains and the cobalt dimers to form a 3-D framework. Compounds 1 and 2 represent the first examples of reduced molybdenum(V) phosphates decorated with transition metal complexes chains. The 3-D framework of 3 is constructed from Zn[P4Mo6]2 dimers bonded together with [Zn(bpy)] coordination complexes and [Zn(bpy)(H2O)2] complexes. In compound 4, the Cd[P4Mo6]2 dimers are coordinated with [Cd(bpy)(H2O)] and [Cd(bpy)(H2O)2] complexes to construct a 3-D structure. To our best knowledge, it is the first time that linear ligand 4,4′-bpy molecules have been grafted into the backbone of reduced molybdenum phosphates. Furthermore, the magnetic properties of compounds 1 and 2 are reported.  相似文献   

12.
The solvatothermal reactions of V2O5, the appropriate organoamine and HF in the temperature range 100-180 °C yielded a series of vanadium fluorides and oxyfluorides. The compounds [NH4][H3N(CH2)2NH3][VF6] (1) and [H3N(CH2)2NH3][VF5(H2O)] (2) contain mononuclear V(III) anions, while [H3N(CH2)2NH2(CH2)2NH3]2 [VF5(H2O)]2[VOF4(H2O)] (3) exhibits both V(IV) and V(III) mononuclear anions. Both compound 4, [H3NCH2(C6H4)CH2NH3][VOF4]·H2O (4·H2O) and compound 5, [HN(C2H4)3NH][V2O2F6 (H2O)2] (5) contain binuclear anions constructed from edge-sharing V(IV) octahedra. In contrast, [H3N(CH2)2NH2(CH2)2NH3]2[V4O4F14(H2O)2], (6) exhibits a tetranuclear unit of edge- and corner-sharing V(IV) octahedra. Compound 7, [H3N(CH2)2NH2][VF5], contains chains of corner-sharing {VIVF6} octahedra, while [H2N(C2H4)2NH2]3[V4F17O]·1.5H2O (8·1.5H2O) is two-dimensional with a layer of V(III) and V(IV) octahedra in an edge- and corner-sharing arrangement. In the case of [H3N(CH2)2NH3][V2O6] (9), there was no fluoride incorporation, and the anion is a one-dimensional chain of corner-sharing V(V) tetrahedra.  相似文献   

13.
The first structurally characterised oxomolybdenum(V) complexes with thienyl carboxylate ligands were prepared by the reaction of [Mo2O3(C5H7O2)4] or (NH4)2[MoOCl5] with the corresponding acid (2-thiophenecarboxylic, 5-methyl-2-thiophenecarboxylic or 3-(3-thienyl)acrylic acid). Complexes [Mo2O3(μ-OC2H5)(μ-O2CR)(C5H7O2)2](R = -C4H3S (1), -C4H2S(CH3) (2) or -CHCHC4H3S (3)) were obtained upon substitution of two acetylacetonate ligands from [Mo2O3(C5H7O2)4] with RCOO in dry ethanol. Reactions of (NH4)2[MoOCl5] with the corresponding thienyl carboxylic acid in the presence of γ-picoline (C6H7N) yielded complexes (C6H7NH)[Mo2O4(μ-O2CR)Cl2(C6H7N)2] (R = -C4H3S (4), -C4H2S(CH3) (5) or -CHCHC4H3S (6)). All of the six new complexes were characterised as dinuclear. The molecular structures of 1, 3, 4·0.5CH3CN and 5 were determined by the single crystal X-ray diffraction method. In the complexes the two molybdenum atoms are doubly bridged either by one oxygen and one ethoxy-oxygen, or alternatively by two oxo-oxygens, and are additionally bridged by the thienyl carboxylate ion in a didentate bridging manner. All complexes were further characterised by means of chemical analysis, IR spectroscopy, TG and in some cases by the one and two-dimensional NMR method.  相似文献   

14.
Dinuclear dichloro complexes [Ru(C6H6)Cl2]2, [Ru(p-MeC6H4 iPr)Cl2]2, [Ru(1,2,4,5-C6H2Me4)Cl2]2, and [Ru(C6Me6)Cl2]2 react in ethanol with p-bromothiophenol to give the corresponding cationic complexes [Ru2(C6H6)2(p-S-C6H4-Br)3]+ (1), [Ru2(p-MeC6H4 iPr)2(p-S-C6H4-Br)3]+ (2), [Ru2(1,2,4,5-C6H2Me4)2(p-S-C6H4-Br)3]+ (3), and [Ru2(C6Me6)2(p-S-C6H4-Br)3]+ (4), which can be isolated in quantitative yield as their chloride salts. X-ray structure analysis of these complexes shows that the nature of the arene ligand influences the folding of the p-S-C6H4-Br units. In 1, where the less hindered arene ligand is present, the three phenyl rings of the thiolato units are not constrained to a coplanar arrangement, whereas in 4 the C6Me6 forces the three phenyl rings to be in perfect planarity. Complexes 2 and 3 show an intermediary arrangement.  相似文献   

15.
A new germanium-polyoxovanadate, (H3aep)4[V14Ge8O50]·2(aep)·13H2O (1), has been synthesized under solvothermal conditions applying GeO2, NH4VO3, Cu(NO3)2·3H2O and an aqueous solution of 1-(2-aminoethyl)-piperazine (aep, C6H18N3) in the temperature range from 110 to 150 °C. The compound crystallizes in the non-centrosymmetric tetragonal space group P-421c with = 17.193(1) Å, = 16.501(1) Å, V = 4877.9(5) Å3 and Z = 2. The structure consists of isolated spherical [VIV14GeIV8O50]12− cluster anions and protonated amine molecules as counterions. The cluster anion can be viewed as a derivative of the [V18O42] archetype by replacing four VO5 pyramids by four Ge2O7 units. The latter are formed by corner-sharing of two [GeO4]4− tetrahedra. At temperatures above 150 °C the compound (H2pip)4(Hpip)4[VIV14GeIV8O50(H2O)] (2) (pip = piperazine, C4N2H10) is formed and during the reaction Cu2+ is reduced to elemental copper. This redox reaction is essential for the formation of 2. The crystal water molecules in the structure of 1 are emitted at low temperatures. The magnetic properties are dominated by strong intra-cluster antiferromagnetic coupling and the strongest exchange between edge- and corner-sharing VO5 square pyramids results in an eight-membered spin ring to which two three-membered spin bridges are joined. The magnetic susceptibility data suggest that even at the low temperature of 2 K several multiplet states are still significantly populated.  相似文献   

16.
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, [C8N4H26][Ga6F4(PO4)6], I, [C5N3H11][Ga3F2(PO4)3]·H2O, II, [C6N3H19][Ga4(C2O4)(PO4)4(H2PO4)]·2H2O, III, [Ga2F3(HPO4)(PO4)]·2H3O, IV, and [C3N2H5]2[Ga4(H2O)3(HPO3)7], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA.  相似文献   

17.
In this report, chiral dirhodium (II) with ortho-metalated phosphane ligands, namely (M)-Rh2(O2CR) 2(PC)2 [PC = ortho-metalated aryl phosphane, O2CR = carboxylate bridging ligands) (1a-g), have been used for the intramolecular cyclopropanation of racemic1-diazo-6-methyl-3-(2-propenyl)-5-hepten-2-one (2), containing both a tri- and monosubstituted carbon-carbon double bond, in pentane. The highest level of regiocontrol has been obtained with chiral catalyst Rh2(O2CCH3)2[(p-MeC6H3)P(p-MeC6H4)2]2 (M)-1c, affording favorably trisubstituted cyclopropane 3 versus monosubstituted cyclopropane 4 in 74:26 ratio. An exceptional diastereoselectivity was obtained with the entire catalyst series, leading to the unique formation of the syn products. Excellent enantiocontrol values (80-90% ee) have been achieved with catalysts 1a [(PC = (C6H3)P(C6H4)2, R = C(CH3)3)], 1c [PC = p-MeC6H3)P(p-MeC6H4)2, R = CH3], 1f [PC = m-CH3C6H3)P(m-CH3C6H4)2, R = CF3] and 1g [PC = 3,5-(CH3)2C6H3)P(3,5-(CH3)2C6H4)2, R = CF3] at room temperature. Pentane is found to be a convenient solvent for high enantiocontrol in the cyclopropanation of α-diazo ketone 2.  相似文献   

18.
A series of acetato complexes of molybdenum(V), based on the singly metal–metal bonded {Mo2O4}2+ structural fragment, has been prepared. A dinuclear (PyH)3[Mo2O4Cl4(OOCCH3)] · CH3CN (1) (PyH+ = pyridinium cation, C5H5NH+) was obtained upon the reaction of (PyH)5[MoOCl4(H2O)]3Cl2 with the equimolar solution of pyridine and acetic acid in acetonitrile at ambient conditions. The acetato ligand in 1 is coordinated to a pair of molybdenum atoms in a synsyn bidentate bridging manner. (PyH)n[MoOBr4]n afforded in an analogous synthetic procedure a tetranuclear cluster, [Mo4O8(OOCCH3)3(OH)Py4] · 1/2CH 3CN · 1/2H2O (3), with a novel core which may be envisioned as the acetate- and hydroxide-assisted assembly of {Mo2O4}2+ building blocks. Its structure is presented in terms of known tetranuclear clusters which are also composed of two {Mo2O4}2+ units. The acetato ligands in 3 adopted apart from bidentate bridging binding modes also a monodentate one. Partial substitution of chlorido ligands in (PyH)3[Mo2O4Cl4(OOCCH3)] · CH3CN (1) with pyridine resulted in a neutral [Mo2O4Cl(OOCCH3)Py3] · PriOH · Py (2) which retained the original acetate coordination. The title compounds were fully characterized by X-ray diffraction studies and infrared vibrational spectroscopy.  相似文献   

19.
Outstanding among the plethora of roles of vanadium in biological systems is its ability to act as an insulin mimetic agent, counteracting hyperglycemia. Poised to comprehend the interactions of V(V) with physiological substrates of low molecular mass, research efforts were launched to investigate the aqueous synthetic chemistry of the ternary V(V)–citric acid–H2O2 system. In a pH-specific fashion, reaction of VCl3 with citric acid and H2O2 in aqueous ammonia led to the isolation of a unique assembly of ternary dinuclear complexes in (NH4)6[V2O2(O2)2(C6H5O7)2] · [V2O2(O2)2(C6H6O7)2] · 6H2O (1). This unique assembly of dinuclear species was characterized by elemental analysis, FT-IR spectroscopy and X-ray crystallography. The structure of 1 reveals two dinuclear V2O2 core complexes, bearing peroxo moieties and bound citrates of variable deprotonation state and coordination mode. The physicochemical data: (a) present an unusual “instant picture” of the pH-specific aqueous speciation of the investigated system, attest to the presence of known species and clearly suggest the existence of a new discrete species in the aqueous structural speciation of the ternary system, (b) exemplify the usefulness of the synthetic strategy in the discovery of new discrete V(V)–citrate–peroxo species, and (c) offer insight into the ternary interactions of V(V) toward O-containing substrates relevant to insulin mimetic activity.  相似文献   

20.
Effect of heteroligands (L) on the properties of vanadium peroxides was investigated by preparing a number of peroxovanadium complexes, which were characterized by analysis, IR, UV/V and NMR spectra. X-ray structures for some were obtained. The vanadates(V) contain the cation M(I)=Na, K, NH4, Rb or Cs. Diperoxo complexes include M(I)[VO(O2)2L], where L=dipyridyl, o-phenanthroline; M(I)3[VO(O2)2(C2O4)]; K2[(nicotinic acid) {VO(O2)2}2]H2O;M(I)4[O{VO(O2)2}2 cystine]2H2O; H4[O{VO(O2)2(adenine)2)2]2H2O; and K2H2[O{VO(O2)2(adenosine)}2]2H2O. Monoperoxo vanadates(V) correspond to the formula M(I)2[VO(O2)L]2 for L=citrate and malate; M(I)2[VO(O2)L] for L=nitrilotriacetate; M(I)[VO(O2)L] for L=iminodiacetate, tartrate and EDTA; and [HVO2(O2)(adenosine)]2H2O. Syntheses of these heteroligand peroxovanadium compounds are sensitive to pH, temperature and the concentration of the components. The stability towards decomposition in solid state, mother-liquid and pure water solutions depends upon the heteroligand. Characteristic (V=O) and (O-O) stretching frequency bands in IR can be correlated with the corresponding bond lengths and the [peroxoV(V)] charge transfer bands in UV/V spectra. Intramolecular one-electron transfer in peroxo vanadates(V) can trigger the generation of radicals, and its dependency upon the nature of the heteroligand is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号