首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Properties and applications of microbial transglutaminase   总被引:19,自引:3,他引:19  
Some properties and applications of the transglutaminase (TGase) referred to as microbial TGase (MTGase), derived from a variant of Streptomyces mobaraensis (formerly classified as Streptoverticillium mobaraense), are described. MTGase cross-linked most food proteins, such as caseins, soybean globulins, gluten, actin, myosins, and egg proteins, as efficiently as mammalian TGases by forming an -(-glutamyl)lysine bond. However, unlike many other TGases, MTGase is calcium-independent and has a relatively low molecular weight. Both of these properties are of advantage in industrial applications; a number of studies have illustrated the potential of MTGase in food processing and other areas. The crystal structure of MTGase has been solved. It provides basic structural information on the MTGase and accounts well for its characteristics. Moreover, an efficient method for producing extracellular MTGase has been established using Corynebacterium glutamicum. MTGase may be expected to find many uses in both food and non-food applications.  相似文献   

2.
Feruloyl esterases hydrolyze the ester linkages of ferulic and diferulic acids present in plant cell walls. This interesting group of enzymes also has a potentially broad range of applications in the pharmaceutical and agri-food industries. An overview of the current knowledge of fungal feruloyl esterases focusing on the diverse of substrate specificity and potential applications is presented in this review. Furthermore, biological functions of ferulic acid are discussed.  相似文献   

3.
Production and applications of esterases   总被引:5,自引:2,他引:5  
Esterase plays a major role in the degradation of natural materials and industrial pollutants, viz., cereal wastes, plastics, and other toxic chemicals. It is useful in the synthesis of optically pure compounds, perfumes, and antioxidants. The potential applications of esterase with reference to agriculture, food, and pharmaceutical industries, are discussed in this review. Promising applications in this avenue can be supported by appropriate production strategies.  相似文献   

4.
《Process Biochemistry》2007,42(4):497-509
Feruloyl esterases (FAEs) act synergistically with xylanases to hydrolyze ester-linked ferulic (FA) and diferulic (diFA) acid from cell wall material and therefore play a major role in the degradation of plant biomass. The potential applications of these enzymes with reference to agriculture, food and pharmaceutical industries, are discussed in this review. FAE activities produced by different microorganisms are compared for both submerged and solid state fermentations. In addition, their physicochemical properties and molecular biology are presented.  相似文献   

5.
酯酶自发现以来,逐渐被开发利用于医药、化工、食品等领域,其中动植物来源酯酶工业化应用较少,微生物作为天然的酶资源库,是新型酯酶的主要来源之一。然而,大量新型微生物酯酶由于活性低、稳定性差等原因难以达到工业应用的要求;同时酯酶的筛选、活性评价方法仍存在通用性低、成本高的问题,一定程度上阻碍了新型微生物酯酶挖掘和改造。据此,本文总结了近年来微生物酯酶分类与发现、结构与催化特性、改造和优化以及应用等领域的研究新进展,以期促进酯酶的挖掘和工业化应用。  相似文献   

6.
We have isolated putative esterase genes from various bacterial chromosomes. Thirty open reading frames predicted to encode esterases were randomly selected from 13 sequenced bacterial chromosomes and were cloned into an expression vector. The esterase activity of the resulting clones was tested on a tributyrin plate at different pH values and temperatures. Nine out of thirty tested clones exhibited significant tributyrin hydrolyzing activity. The enzyme S5 from the gene b0494 of Escherichia coli, the enzyme S12 from the gene STM0506 of Salmonella typhimurium, and the enzyme S28 from the gene AF1716 of Archaeoglobus fulgidus exhibited high activity at an alkaline pH range. The esterase S11 encoded by the gene PA3859 of Pseudomonas aeruginosa PAO1 and the esterase S21 from the gene SMc01033 of Sinorhizobium meliloti 1021, both showed a sharp increase in enzyme activity above pH 8.0. Furthermore, the enzymes S5, S12, S21, and S28 retained the esterase activity when they were incubated at 50 degrees C, suggesting that these enzymes are thermostable. Subsequent pH vs. activity and temperature vs. activity experiments with selected enzymes in a solution assay system confirmed the validity of the above data. The genome-wide exploration strategy of proteins provided valuable information on the esterases by revealing subtle biochemical differences between the esterases of different sources.  相似文献   

7.
Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products.Although one-third of all characterized CEs within CAZy families 1⿿7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks.The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.  相似文献   

8.
The characteristic flavor of hard Italian cheeses is associated with the presence of fatty acids, particularly butyric acid, liberated from milk fat during the ripening process. To ensure proper development and control of flavor, animal pregastric esterases or lipases are routinely added to the milk before coagulation of the curd. Such esterases are also used to generate flavor in enzyme modified cheese and other dairy products. Esterases from microbial sources have been investigated as agents to enhance flavor in cheese. We have found that an esterase from Mucor miehei exhibits the type of lipolytic activity needed for this application. Romano and fontina cheeses of excellent quality have been prepared by the use of this esterase. It has also been used successfully in the preparation of enzyme modified cheese, and, in turn, processed American cheese.  相似文献   

9.
Functional classification of the microbial feruloyl esterases   总被引:9,自引:3,他引:6  
Feruloyl esterases have potential uses over a broad range of applications in the agri-food industries. In recent years, the number of microbial feruloyl esterase activities reported has increased and, in parallel, even more related protein sequences may be discerned in the growing genome databases. Based on substrate utilisation data and supported by primary sequence identity, four sub-classes have been characterised and termed type-A, B, C and D. The proposed sub-classification scheme is discussed in terms of the evolutionary relationships existing between carbohydrate esterases.  相似文献   

10.
Identification of genes encoding microbial glucuronoyl esterases   总被引:1,自引:0,他引:1  
Li XL  Spániková S  de Vries RP  Biely P 《FEBS letters》2007,581(21):4029-4035
One type of covalent linkages connecting lignin and hemicellulose in plant cell walls is the ester linkage between 4-O-methyl-D-glucuronic acid of glucuronoxylan and lignin alcohols. An enzyme that could hydrolyze such linkages, named glucuronoyl esterase, occurs in the cellulolytic system of the wood-rotting fungus Schizophyllum commune. Here we report partial amino acid sequences of the enzyme and the results of subsequent search for homologous genes in sequenced genomes. The homologous genes of unknown functions were found in genomes of several filamentous fungi and one bacterium. The gene corresponding to the cip2 gene of Hypocrea jecorina (Trichoderma reesei), known to be up-regulated under conditions of induction of cellulolytic and hemicellulolytic enzymes, was over-expressed in H. jecorina. The product of the cip2 gene was purified to homogeneity and shown to exhibit glucuronoyl esterase activity.  相似文献   

11.
MELDB: a database for microbial esterases and lipases   总被引:1,自引:0,他引:1  
Kang HY  Kim JF  Kim MH  Park SH  Oh TK  Hur CG 《FEBS letters》2006,580(11):2736-2740
MELDB is a comprehensive protein database of microbial esterases and lipases which are hydrolytic enzymes important in the modern industry. Proteins in MELDB are clustered into groups according to their sequence similarities based on a local pairwise alignment algorithm and a graph clustering algorithm (TribeMCL). This differs from traditional approaches that use global pairwise alignment and joining methods. Our procedure was able to reduce the noise caused by dubious alignment in the distantly related or unrelated regions in the sequences. In the database, 883 esterase and lipase sequences derived from microbial sources are deposited and conserved parts of each protein are identified. HMM profiles of each cluster were generated to classify unknown sequences. Contents of the database can be keyword-searched and query sequences can be aligned to sequence profiles and sequences themselves.  相似文献   

12.
Inhibitors of sterol biosynthesis and their applications   总被引:6,自引:0,他引:6  
  相似文献   

13.
Summary Enzymatic degradations of 5 different polyhydroxyalkanoates (PHA) were investigated at 37°C in the aqueous solutions (pH 7.4) containing different microbial enzymes of 16 lipases and 5 PHA depolymerases. The substrate specificities of microbial PHA depolymerases on hydrolysis of polyhydroxyalkanoates were distinguished from those of microbial lipases.  相似文献   

14.
Cutinase is an enzyme that catalyses the degradation of insoluble biopolyester cutin, a structural component of plants. This enzyme has some properties of lipase and esterase. Because of its unique nature, it has potential of being an industrially important enzyme. Some of the useful applications of cutinase include hydrolysis of fats and oils, esterification and transesterification reactions. This enzyme is mainly produced by phytopathogenic fungi, but there are several bacteria which are known to produce cutinase. In this article, the production, purification, characterizations, enhancement of activity and stability, immobilization of the enzyme and its applications in various industries have been discussed.  相似文献   

15.
D-Amino acid oxidase (DAAO) is a biotechnologically relevant enzyme that is used in a variety of applications. DAAO is a flavine adenine dinucleotide-containing flavoenzyme that catalyzes the oxidative deamination of D-isomer of uncharged aliphatic, aromatic, and polar amino acids yielding the corresponding imino acid (which hydrolyzes spontaneously to the α-keto acid and ammonia) and hydrogen peroxide. This enzymatic activity is produced by few bacteria and by most eukaryotic organisms. In the past few years, DAAO from mammals has been the subject of a large number of investigations, becoming a model for the dehydrogenase-oxidase class of flavoproteins. However, DAAO from microorganisms show properties that render them more suitable for the biotechnological applications, such as a high level of protein expression (as native and recombinant protein), a high turnover number, and a tight binding of the coenzyme. Some important DAAO-producing microorganisms include Trigonopsis variabilis, Rhodotorula gracilis, and Fusarium solani. The aim of this paper is to provide an overview of the main biotechnological applications of DAAO (ranging from biocatalysis to convert cephalosporin C into 7-amino cephalosporanic acid to gene therapy for tumor treatment) and to illustrate the advantages of using the microbial DAAOs, employing both the native and the improved DAAO variants obtained by enzyme engineering.   相似文献   

16.
Beta-fructofuranosidase is the enzyme which releases terminal non-reducing beta-D-fructofuranoside residues in beta-D-fructofuranosides--saccharides commonly found in plants. Under appropriate conditions this enzyme may also catalyze the reaction of synthesis. Now, beta-fructofuranosidase is one of best biochemically characterized enzymes. Also the 3D structure of this protein has been determined. Resolution of the conformation of beta fructofuranosidase--so far only from a few microorganisms--has allowed for the partial explanation of its substrate specificity and understanding of mechanisms of enzymatic catalysis. This article presents a review of current reports on properties of beta-fructofuranosidases derived from various sources with focus on their structure, mechanism of action, biosynthesis and industrial applications.  相似文献   

17.
The kinetics of one microbial and two mammalian cholesterol esterases have been examined using a variety of aryl acetates in homogeneous solution. The mammalian enzymes behaved identically but differed somewhat from that of microbial origin. The reactions of all three were not affected by either electronic or hydrophobic characteristics. Taurocholic acid was without effect on the microbial enzyme; at low concentrations it inhibited the mammalian system, but when present in millimolar amounts notable increases in rate were discerned, attributable to the detergent effect on the enzyme.  相似文献   

18.
Summary A pH indicator agar plate method was used to screen for esterase activities for hydrolysis of 2-ethylhexyl butyrate. Seven hundred and fifty-seven selected microbial cultures, including 325 bacteria, and 432 yeasts and actinomycetes from the ARS Culture, Collection, were screened. Among them, 62 cultures hydrolyzed 2-ethylhexyl butyrate. Of these strains only 17 showed lipase activity on a rhodamine B lipase screen. The reaction products, 2-ethyl-1-hexanol andn-butyric acid were confirmed by gas-liquid chromatography (GC) and GC/MS analyses. The yield of 2-ethyl-1-hexanol varied depending on the strains of the microorganisms, with the highest yield at 79.1% by a strain ofPseudomonas myxogenes Product analyses with a cyclodextrin GC chiral column showed that two strains ofPseudomonas produced, greater than 80% enantiomeric excess of S(+)-2-ethyl-1-hexanol.  相似文献   

19.
20.
Feruloyl esterases are part of the enzymatic spectrum employed by fungi and other microorganisms to degrade plant polysaccharides. They release ferulic acid and other aromatic acids from these polymeric structures and have received an increasing interest in industrial applications such as in the food, pulp and paper and bio-fuel industries. This review provides an overview of the current knowledge on fungal feruloyl esterases focussing in particular on the differences in substrate specificity, regulation of their production, prevalence of these enzymes in fungal genomes and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号