首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cryptic female choice (CFC) refers to female-mediated processes occurring during or after copulation that result in biased sperm use in favor of preferred or compatible males. Despite recent empirical support for this hypothesis, evidence that CFC contributes towards the evolution of male body ornaments, in the same way that precopulatory female choice does, is currently lacking. Here, we tested the possibility that CFC selects for increased male attractiveness in the guppy Poecilia reticulata, a freshwater fish exhibiting internal fertilization. Specifically, we examined whether females are able to manipulate the number of sperm transferred or retained at copulation in favor of relatively attractive males. In support of this prediction, we found that following solicited copulations the number of sperm inseminated is influenced exclusively by the female's perception of relative male coloration, independent of any direct manipulation of males themselves. Because females prefer brightly colored males during precopulatory mate choice, our finding that colorful males are also favored as a consequence of enhanced insemination success indicates that cryptic female choice can reinforce precopulatory preferences for extravagant male ornaments.  相似文献   

3.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction.  相似文献   

4.
Sexual selection is a powerful evolutionary force shaping mate choice phenotypes, initiating phenotypic shifts resulting in (or reinforcing) population divergence and speciation when such shifts reduce mating probabilities among divergent populations. In the Hawaiian cricket genus Laupala, pulse rate of male calling song, a conspicuous mating signal, differs among species, potentially behaving as a speciation phenotype. Populations of the widespread species Laupala cerasina show variation in pulse rate. We document the degree of population differentiation in three features of calling song: pulse rate, pulse duration, and carrier frequency. All show significant population differentiation, with pulse rate showing the greatest heterogeneity. A Mantel test found no relationship between geographic distance and pulse rate divergence, indicating that a simple model of greater divergence with increasing distance cannot explain the observed pattern of differentiation. We demonstrate that female preference functions for pulse rate are unimodal, and that preference means show significant differentiation among populations. Furthermore, estimates of pulse rate preference correlate significantly with mean pulse rates across populations, indicating song and preference coevolve in a stepwise manner. This correlated divergence between signal and preference suggests that sexual selection facilitates the establishment of sexual isolation, reduced gene flow, and population differentiation, prerequisites for speciation.  相似文献   

5.
A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases.  相似文献   

6.
7.
The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a ‘sensory network’ with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five‐month‐old(young) and 24‐month‐old (aged) mice were used. H2O2, used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2‐induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N‐acetyl‐cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8‐mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging.  相似文献   

8.
Clinically, bone marrow mesenchymal stem cells (BMSCs) have been used in treatment of many diseases, but the local oxidative stress (OS) of lesion severely limits the survival of BMSCs, which reduces the efficacy of BMSCs transplantation. Therefore, enhancing the anti-OS stress ability of BMSCs is a key breakthrough point. Preconditioning is a common protective mechanism for cells or body. Here, the aim of this study was to investigate the effects of OS preconditioning on the anti-OS ability of BMSCs and its mechanism. Fortunately, OS preconditioning can increase the expression of superoxide dismutase, catalase, NQO1, and heme oxygenase 1 through the nuclear factor erythroid 2-related factor 2 pathway, thereby decreased the intracellular reactive oxygen species (ROS) levels, relieved the damage of ROS to mitochondria, DNA and cell membrane, enhanced the anti-OS ability of BMSCs, and promoted the survival of BMSCs under OS.  相似文献   

9.
Abstract Female mate choice has been demonstrated in a wide variety of species and is now accepted as an important factor in sexual selection. One of the remaining questions, however, is why females prefer specific males. Do females or their offspring benefit from their choice? Or do females choose mates to minimize costs of mating? Here we show that, in the ovoviviparous cockroach Nauphoeta cinerea, where sexual selection has been well documented, females chose mates to avoid costly male manipulation. Females were partnered with preferred or nonpreferred mates, and fitness of the females measured. We found that females lived longer when they mated with preferred males. Female lifespan depended on the rate at which offspring developed from egg to parturition: slower development led to longer life. We manipulated the male pheromone and showed that the component of the pheromone blend that makes males attractive to females also delayed parturition. Thus, like other aspects of sexual conflict in this species, offspring development and thereby the mother's lifespan depended on exposure of females to specific components of the male pheromone. Males benefit from manipulating offspring development because females with accelerated parturition remained unreceptive whereas females with slower developing offspring readily remated after giving birth to their offspring. Our results suggest a hormone‐like role for the male pheromone in N. cinerea and provide the first direct evidence of mate choice to avoid male manipulation. This study shows that dominant males may not be preferred males if they are manipulating females, why multiple components with contrasting effects can exist in a sexual signal, and emphasizes the complex fitness relationships that can arise in species with sexual conflict.  相似文献   

10.
Plants suffering from abiotic stress are commonly facing an enhanced accumulation of reactive oxygen species (ROS) with damaging as well as signalling effects at organellar and cellular levels. The outcome of an environmental challenge highly depends on the delicate balance between ROS production and scavenging by both enzymatic and metabolic antioxidants. However, this traditional classification is in need of renewal and reform, as it is becoming increasingly clear that soluble sugars such as disaccharides, raffinose family oligosaccharides and fructans – next to their associated metabolic enzymes – are strongly related to stress‐induced ROS accumulation in plants. Therefore, this review aims at extending the current concept of antioxidants functioning during abiotic stress, with special focus on the emanate role of sugars as true ROS scavengers. Examples are given based on their cellular location, as different organelles seem to exploit distinct mechanisms. Moreover, the vacuole comes into the picture as important player in the ROS signalling network of plants. Elucidating the interplay between the mechanisms controlling ROS signalling during abiotic stress will facilitate the development of strategies to enhance crop tolerance to stressful environmental conditions.  相似文献   

11.
Bacteria have survived, and many have thrived, since antiquity in the presence of the highly‐reactive chalcogen—oxygen (O2). They are known to evoke intricate strategies to defend themselves from the reactive by‐products of oxygen—reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)‐cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH—the reductive engine of many ROS‐combating enzymes—is maintained by metabolic enzymes including, but not exclusively, glucose‐6 phosphate dehydrogenase (G6PDH) and NADP‐dependent isocitrate dehydrogenase (ICDH‐NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro‐oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids—moieties capable of non‐enzymatic decarboxylation in the presence of oxidants—as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid‐mediated detoxification of the ROS will be commented on within the context of oxidative stress.  相似文献   

12.
13.
Oxidative stress is a damaging process resulting from an imbalance between excessive generation of oxidant compounds and insufficient antioxidant defence mechanisms. Oxidative stress plays a crucial role in the initiation and progression of cigarette smoke-induced lung injury, deterioration in lung functions, and development of chronic obstructive pulmonary disease (COPD). In smokers and in patients with COPD, the increased oxidant burden derives from cigarette smoke per se, and from activated inflammatory cells releasing enhanced amounts of reactive oxygen and nitrogen species (ROS, RNS, respectively). Although mild oxidative stress resulting from cigarette smoking leads to the upregulation of the antioxidative enzymes synthesis in the lungs, high levels of ROS and RNS observed in patients with COPD overwhelm the antioxidant enzymes capacities, resulting in oxidant-mediated lung injury and cell death. In addition, depletion of antioxidative systems in the systemic circulation was consistently observed in such patients. The imbalance between the generation of ROS/RNS and antioxidant capacities — the state of “oxidative stress” — is one of the major pathophysiologic hallmarks in the development of COPD. Detrimental effects of oxidative stress include impairment of membrane functions, inactivation of membrane-bound receptors and enzymes, and increased tissue permeability. In addition, oxidative stress aggravates the inflammatory processes in the lungs, and contributes to the worsening of the protease-antiprotease imbalance. Several markers of oxidative stress, such as increases in lipid peroxidation products and reductions in glutathione peroxidase activity, have been shown to be related to the reductions in pulmonary functions. In the present article we review the current knowledge about the vicious cycle of cigarette smoking, oxidative stress, and inflammation in the pathogenesis of COPD.  相似文献   

14.
Female preferences for males producing their calls just ahead of their neighbours, leader preferences, are common in acoustically communicating insects and anurans. While these preferences have been well studied, their evolutionary origins remain unclear. We tested whether females gain a fitness benefit by mating with leading males in Neoconocephalus ensiger katydids. We mated leading and following males with random females and measured the number and quality of F1, the number of F2 and the heritability of the preferred male trait. We found that females mating with leaders and followers did not differ in the number of F1 or F2 offspring. Females mating with leading males had offspring that were in better condition than those mating with following males suggesting a benefit in the form of higher quality offspring. We found no evidence that the male trait, the production of leading calls, was heritable. This suggests that there is no genetic correlate for the production of leading calls and that the fitness benefit gained by females must be a direct benefit, potentially mediated by seminal proteins. The presence of benefits indicates that leader preference is adaptive in N. ensiger, which may explain the evolutionary origin of leader preference; further tests are required to determine whether fitness benefits can explain the phylogenetic distribution of leader preference in Neoconocephalus. The absence of heritability will prevent leader preference from becoming coupled with or exaggerating the male trait and prevent females from gaining a ‘sexy‐sons’ benefit, weakening the overall selection for leader preference.  相似文献   

15.
The excessive and inappropriate production of reactive oxygen species (ROS) can cause oxidative stress and is implicated in the pathogenesis of lung cancer. Cyclophilin A (CypA), a member of the immunophilin family, is secreted in response to ROS. To determine the role of CypA in oxidative stress injury, we investigated the role that CypA plays in human lung carcinoma (A549) cells. Here, we showed the protective effect of human recombinant CypA (hCypA) on hydrogen peroxide (H2O2)-induced oxidative damage in A549 cells, which play crucial roles in lung cancer. Our results demonstrated that hCypA substantially promoted cell viability, superoxide dismutase (SOD), glutathione (GSH), and GSH peroxidase (GSH-Px) activities, and attenuated ROS and malondialdehyde (MDA) production in H2O2-induced A549 cells. Compared with H2O2-induced A549 cells, Caspase-3 activity in hCypA-treated cells was significantly reduced. Using Western blotting, we showed that hCypA facilitated Bcl-2 expression and inhibited Bax, Caspase-3, Caspase-7, and PARP-1 expression. Furthermore, hCypA activates the PI3K/Akt/mTOR pathway in A549 cells in response to H2O2 stimulation. Additionally, peptidyl-prolyl isomerase activity was required for PI3K/Akt activation by CypA. The present study showed that CypA protected A549 cells from H2O2-induced oxidative injury and apoptosis by activating the PI3K/Akt/mTOR pathway. Thus, CypA might be a potential target for lung cancer therapy.  相似文献   

16.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

17.
《Free radical research》2013,47(2):204-213
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β1, TNF-α and α1(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β1, TNF-α and α1 (I) collagen in hepatic tissues.  相似文献   

18.
机体累积过量的活性氧自由基所导致的氧化应激是多种肠道疾病发生的共同病理生理基础。肠上皮细胞间的紧密连接是维持肠屏障功能的重要结构基础之一。近年来研究表明,氧化应激能通过多种途径破坏肠上皮细胞间的紧密连接,导致肠上皮屏障功能障碍。本文对蛋白激酶C、丝裂原活化蛋白激酶、蛋白质的修饰以及缺氧诱导因子-1(HIF-1)在肠屏障功能障碍中的作用机制进行简要概述,旨在为肠屏障功能障碍的治疗和预后提供新的思路。  相似文献   

19.
The toxicity of sodium nitroprusside (SNP) was tested on the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with SNP at concentrations of 0.01-1.5 mM. Food supplementation with SNP caused a developmental delay in flies and reduced adult eclosion. Biochemical analyses such as levels of oxidative stress markers and activities of antioxidant and associated enzymes were carried out on 2-day-old flies emerged from control and SNP-fed larvae. Larval exposure to SNP resulted in lower activities of aconitase and catalase in adult flies relative to the control cohort. However, larval treatment with SNP led to higher carbonyl protein content and higher activities of superoxide dismutase, glucose-6-phosphate dehydrogenase, thioredoxin reductase, and glutathione-S-transferase in flies. Among the parameters tested, aconitase activity and developmental end points may be useful early indicators of toxicity caused by SNP. The study also suggests that the toxicity of SNP may arise not just from its direct effects, but also from its decomposition products such as nitric oxide and iron ions.  相似文献   

20.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号