首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The α-proteobacteria phylogenetically related to the Roseobacter clade are predominantly responsible for the degradation of organosulfur compounds, including the algal osmolyte dimethylsulfoniopropionate (DMSP). Silicibacter sp. strain TM1040, isolated from a DMSP-producing Pfiesteria piscicida dinoflagellate culture, degrades DMSP, producing 3-methylmercaptopropionate. TM1040 possesses three lophotrichous flagella and is highly motile, leading to a hypothesis that TM1040 interacts with P. piscicida through a chemotactic response to compounds produced by its dinoflagellate host. A combination of a rapid chemotaxis screening assay and a quantitative capillary assay were used to measure chemotaxis of TM1040. These bacteria are highly attracted to dinoflagellate homogenates; however, the response decreases when homogenates are preheated to 80°C. To help identify the essential attractant molecules within the homogenates, a series of pure compounds were tested for their ability to serve as attractants. The results show that TM1040 is strongly attracted to amino acids and DMSP metabolites, while being only mildly responsive to sugars and the tricarboxylic acid cycle intermediates. Adding pure DMSP, methionine, or valine to the chemotaxis buffer resulted in a decreased response to the homogenates, indicating that exogenous addition of these chemicals blocks chemotaxis and suggesting that DMSP and amino acids are essential attractant molecules in the dinoflagellate homogenates. The implication of Silicibacter sp. strain TM1040 chemotaxis in establishing and maintaining its interaction with P. piscicida is discussed.  相似文献   

2.
Silicibacter sp. TM1040, originally isolated from a culture of the dinoflagellate Pfiesteria piscicida, senses and responds to the dinoflagellate secondary metabolite dimethylsulfoniopropionate (DMSP) by flagella-mediated chemotaxis behaviour. In this report we show that swimming motility is important for initiating the interaction between the bacterium and dinoflagellate. Following transposon mutagenesis, three mutants defective in wild-type swimming motility (Mot-) were identified. The defects in motility were found to be in homologues of cckA and ctrA, encoding a two-component regulatory circuit, and in a novel gene, flaA, likely to function in flagellar export or biogenesis. Mutation of flaA or cckA results in the loss of flagella and non-motile cells (Fla-), while CtrA- cells possess flagella, but have reduced motility due to increased cell length. All three Mot- mutants were defective in attaching to the dinoflagellate, particularly to regions that colocalized with intracellular organelles. The growth rate of the dinoflagellates was reduced in the presence of the Fla- mutants compared with Fla+ cells. These results indicate that bacterial motility is important for the Silicibacter sp. TM1040-P. piscicida interaction.  相似文献   

3.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and help to explain the dominance of members of this clade in association with marine algal microbiota.  相似文献   

4.
The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3) that exhibited a low frequency of spontaneous loss. Homologs of tdaA and tdaB from Silicibacter sp. strain TM1040 were identified by mutagenesis in another TDA-producing roseobacter, Phaeobacter sp. strain 27-4, which also possesses two large plasmids (ca. 60 and ca. 70 kb, respectively), and tda genes were found by DNA-DNA hybridization in 88% of a diverse collection of nine roseobacters with known antibiotic activity. These data suggest that roseobacters may use a common pathway for TDA biosynthesis that involves plasmid-encoded proteins. Using metagenomic library databases and a bioinformatics approach, differences in the biogeographical distribution between the critical TDA synthesis genes were observed. The implications of these results to roseobacter survival and the interaction between TM1040 and its dinoflagellate host are discussed.  相似文献   

5.
Strain-specific chemotaxis of Azospirillum spp.   总被引:13,自引:4,他引:9       下载免费PDF全文
Chemotactic responses of three Azospirillum strains originating from different host plants were compared to examine the possible role of chemotaxis in the adaptation of these bacteria to their respective hosts. The chemotaxis to several sugars, amino acids, and organic acids was determined qualitatively by an agar plate assay and quantitatively by a channeled-chamber technique. High chemotactic ratios, up to 40, were obtained with the latter technique. The chemotactic response did not rely upon the ability of the bacteria to metabolize the attractant. Rather, it depended on the attractant concentration and stereoconfiguration. Chemotaxis was found to be strain specific. Differences were particularly observed between a wheat isolate and strains originating from the C4-pathway plants maize and Leptochloa fusca. In contrast to the other two strains, the wheat isolate was strongly attracted to D-fructose, L-aspartate, citrate, and oxalate. The other strains showed maximal attraction to L-malate. The chemotactic responses to organic acids partially correlate with the exudation of these acids by the respective host plants. Additionally, a heat-labile, high-molecular-weight attractant was found in the root exudates of L. fusca, which specifically attracted the homologous Azospirillum strain. It is proposed that strain-specific chemotaxis probably reflects an adaptation of Azospirillum spp. to the conditions provided by the host plant and contributes to the initiation of the association process.  相似文献   

6.
Community-acquired urinary tract infections (UTIs) are commonly caused by uropathogenic Escherichia coli (UPEC). We hypothesize that chemotaxis toward ligands present in urine could direct UPEC into and up the urinary tract. Wild-type E. coli CFT073 and chemoreceptor mutants with tsr, tar, or aer deletions were tested for chemotaxis toward human urine in the capillary tube assay. Wild-type CFT073 was attracted toward urine, and Tsr and Tar were the chemoreceptors mainly responsible for mediating this response. The individual components of urine including L-amino acids, D-amino acids and various organic compounds were also tested in the capillary assay with wild-type CFT073. Our results indicate that CFT073 is attracted toward some L- amino acids and possibly toward some D-amino acids but not other common compounds found in urine such as urea, creatinine and glucuronic acid. In the murine model of UTI, the loss of any two chemoreceptors did not affect the ability of the bacteria to compete with the wild-type strain. Our data suggest that the presence of any strong attractant and its associated chemoreceptor might be sufficient for colonization of the urinary tract and that amino acids are the main chemoattractants for E. coli strain CFT073 in this niche.  相似文献   

7.
Mycoplasma sp. nov. strain 163K, the gliding microorganism isolated from the gills of a tench (Tinca tinca L.), is capable of chemotaxis, being attracted to sugars, amino acids, and mucus. The chemotactic behavior of the organisms was microscopically investigated and documented by long-time exposure photomicrographs providing motility tracks. In diffusion-generated concentration gradients of chemoattractive substances, the random motion of the mycoplasmas was strongly biased in the direction of increasing attractant concentrations.  相似文献   

8.
9.
10.
11.
Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 micro g of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.  相似文献   

12.
The Roseobacter clade of marine bacteria is often found associated with dinoflagellates, one of the major producers of dimethylsulfoniopropionate (DMSP). In this study, we tested the hypothesis that Roseobacter species have developed a physiological relationship with DMSP-producing dinoflagellates mediated by the metabolism of DMSP. DMSP was measured in Pfiesteria and Pfiesteria-like (Cryptoperidiniopsis) dinoflagellates, and the identities and metabolic potentials of the associated Roseobacter species to degrade DMSP were determined. Both Pfiesteria piscicida and Pfiesteria shumwayae produce DMSP with an average intracellular concentration of 3.8 microM. Cultures of P. piscicida or Cryptoperidiniopsis sp. that included both the dinoflagellates and their associated bacteria rapidly catabolized 200 microM DMSP (within 30 h), and the rate of catabolism was much higher for P. piscicida cultures than for P. shumwayae cultures. The community of bacteria from P. piscicida and Cryptoperidiniopsis cultures degraded DMSP with the production of dimethylsulfide (DMS) and acrylate, followed by 3-methylmercaptopropionate (MMPA) and methanethiol (MeSH). Four DMSP-degrading bacteria were isolated from the P. piscicida cultures and found to be taxonomically related to Roseobacter species. All four isolates produced MMPA from DMSP. Two of the strains also produced MeSH and DMS, indicating that they are capable of utilizing both the lyase and demethylation pathways. The diverse metabolism of DMSP by the dinoflagellate-associated Roseobacter spp. offers evidence consistent with a hypothesis that these bacteria benefit from association with DMSP-producing dinoflagellates.  相似文献   

13.
Abstract The plasmodium of Physarum polycephalum exhibited positive chemotaxis towards l -alanine, l -aspartate, l -asparagine, l -glutamate, glycine, l -leucine, l -serine, and l -threonine and negative chemotaxis towards l -tryptophan. All attractant amino acids, except l -serine and l -threonine competed with each other; l -serine and l -threonine competed with the other amino acids but did not interfere with the response to each other. Cyclic nucleotides were attractants and cyclic 3',5'- or 2',3'-phosphate derivatives of either adenine or guanine were active, wheras compounds lacking the ring structure generally were not. Folic acid was an attractant whereas certain aromatic compounds were either inactive or repellent.  相似文献   

14.
Approximately 70% of sequenced bacterial genomes contain prophage-like structures, yet little effort has been made to use this information to determine the functions of these elements. The recent genomic sequencing of the marine bacterium Silicibacter sp. strain TM1040 revealed five prophage-like elements in its genome. The genomes of these prophages (named prophages 1 to 5) are approximately 74, 30, 39, 36, and 15 kb long, respectively. To understand the function of these prophages, cultures of TM1040 were treated with mitomycin C to induce the production of viral particles. A significant increase in viral counts and a decrease in bacterial counts when treated with mitomycin C suggested that prophages were induced from TM1040. Transmission electron microscopy revealed one dominant type of siphovirus, while pulsed-field gel electrophoresis demonstrated two major DNA bands, equivalent to 35 and 75 kb, in the lysate. PCR amplification with primer sets specific to each prophage detected the presence of prophages 1, 3, and 4 in the viral lysate, suggesting that these prophages are inducible, but not necessarily to the same level, while prophages 2 and 5 are likely defective or non-mitomycin C-inducible phages. The combination of traditional phage assays and modern microbial genomics provides a quick and efficient way to investigate the functions and inducibility of prophages, particularly for a host harboring multiple prophages with similar sizes and morphological features.  相似文献   

15.
Chemotaxis by Pseudomonas syringae pv. tomato   总被引:1,自引:0,他引:1       下载免费PDF全文
Optimal laboratory conditions for studying chemotaxis by Pseudomonas syringae pv. tomato were determined by using the Adler capillary tube assay. Although they are not an absolute requirement for chemotaxis, the presence of 0.1 mM EDTA and 1 mM MgCl2 in the chemotaxis buffer (10 mM potassium phosphate [pH 7.2]) significantly enhanced the response to attractant. The addition of mannitol as an energy source had little effect. The optimal temperature for chemotaxis was 23°C, which is 5°C below the optimal growth temperature for this pathogen. The best response occurred when the bacteria were exposed to attractant for 60 min at a concentration of approximately 5 × 106 CFU/ml. P. syringae pv. tomato was strongly attracted to citric and malic acids, which are the predominant organic acids in tomato fruit. With the exception of asparagine, the major amino acids of tomatoes were weak to moderate attractants. Glucose and fructose, which account for approximately 47% of tomato dry matter, also elicited poor responses. In assays with tomato intercellular fluid and leaf surface water, the bacterial speck pathogen could not chemotactically distinguish between a resistant and a susceptible cultivar of tomato.  相似文献   

16.
The initial step in the anaerobic degradation of the algal osmolyte dimethylsulfoniopropionate (DMSP) in anoxic marine sediments involves either a cleavage to dimethylsulfide and acrylate or a demethylation to 3-S-methylmercaptopropionate. Thus far, only one anaerobic bacterial strain has been shown to carry out the demethylation, namely, Desulfobacterium sp. strain PM4. The aims of the present work were to study how common this property is among certain groups of anaerobic bacteria and to obtain information on the affinities for DMSP of DMSP-demethylating strains. Screening of several pure cultures of sulfate-reducing and acetogenic bacteria showed that Desulfobacterium vacuolatum DSM 3385 and Desulfobacterium niacini DSM 2059 are also able to demethylate DMSP; a very slow demethylation of DMSP was observed with a salt-tolerant strain of Eubacterium limosum. From a 10(5) dilution of intertidal sediment a new marine DMSP-demethylating sulfate-reducing bacterium (strain WN) was isolated. Strain WN was a short, gram-negative, nonmotile rod that grew on betaine, sarcosine, palmitate, H2 plus CO2, and several alcohols, organic acids, and amino acids. Extracts of betaine-grown cells had hydrogenase, formate dehydrogenase, and CO dehydrogenase activities but no alpha-ketoglutarate oxidoreductase activity, indicating the presence of the acetyl coenzyme A-CO dehydrogenase pathway. Analysis of the 16S rRNA gene sequence of strain WN revealed a close relationship with Desulfobacter hydrogenophilus, Desulfobacter latus, and Desulfobacula toluolica. Strain PM4 was shown to group with Desulfobacterium niacini. The K(m) of strain WN for DMSP, as derived from substrate progress curves in cell suspensions, was approximately 10 microM. A similar value was found for D. niacini PM4.  相似文献   

17.
Pseudomonas aeruginosa (Schroeter) Migula, a numerically significant bacterium found during N(2)-fixing blooms of the blue-green algae (cyanobacteria) Anabaena sp. in the Chowan River, North Carolina, was chemotactically attracted to amino acids when tested in a radioassay. The bacterium was labeled with P(i), and the disintegrations per minute determined by liquid scintillation counting were proportional to the number of cells accumulating in microcapillaries containing amino acids. Positive chemotaxis was observed toward all of the amino acids tested, although the degrees of response varied. Since many nitrogen-fixing blue-green algae secrete nitrogenous compounds, this attraction may be instrumental in establishing a symbiotic relationship between this bacterium and blue-green algae in freshwater.  相似文献   

18.
Acidovorax sp. strain JS42 is able to utilize 2-nitrotoluene (2NT) as its sole carbon, nitrogen, and energy source. We report here that strain JS42 is chemotactic to 2NT and that the response is increased when cells are grown on compounds such as 2NT that are known to induce the first step of 2NT degradation. Assays with JS42 mutants unable to oxidize 2NT showed that the first step of 2NT metabolism was required for the induced response, but not for a portion of the constitutive response, indicating that 2NT itself is an attractant. The 2NT metabolite nitrite was shown to be a strong attractant for strain JS42, and sufficient nitrite was produced during the taxis assay to account for a large part of the induced response. A mutant with an inactivated ntdY gene, which is located adjacent to the 2NT degradation genes and codes for a putative methyl-accepting chemotaxis protein, showed a defect in taxis toward 2NT that may involve a reduced response to nitrite. Responses of a mutant defective for the energy-taxis receptor, Aer, indicated that a functional aer gene is required for a substantial part of the wild-type induced response to 2NT. In summary, strain JS42 utilizes three types of taxis to sense and respond to 2NT: constitutive 2NT-specific chemotaxis to directly sense 2NT, metabolism-dependent nitrite-specific chemotaxis that may be mediated by NtdY, and energy taxis mediated by Aer.  相似文献   

19.
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates.  相似文献   

20.
Pseudomonas aeruginosa (Schroeter) Migula, a numerically significant bacterium found during N2-fixing blooms of the blue-green algae (cyanobacteria) Anabaena sp. in the Chowan River, North Carolina, was chemotactically attracted to amino acids when tested in a radioassay. The bacterium was labeled with 32Pi, and the disintegrations per minute determined by liquid scintillation counting were proportional to the number of cells accumulating in microcapillaries containing amino acids. Positive chemotaxis was observed toward all of the amino acids tested, although the degrees of response varied. Since many nitrogen-fixing blue-green algae secrete nitrogenous compounds, this attraction may be instrumental in establishing a symbiotic relationship between this bacterium and blue-green algae in freshwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号