首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Jiang J  Lu J  Lu D  Liang Z  Li L  Ouyang S  Kong X  Jiang H  Shen B  Luo C 《PloS one》2012,7(5):e36660
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.  相似文献   

7.
We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.  相似文献   

8.
Lysine-specific murine histone H3 methyltransferase, G9a, was expressed and purified in a baculovirus expression system. The primary structure of the recombinant enzyme is identical to the native enzyme. Enzymatic activity was favorable at alkaline conditions (>pH 8) and low salt concentration and virtually unchanged between 25 and 42 degrees C. Purified G9a was used for substrate specificity and steady-state kinetic analysis with peptides representing un- or dimethylated lysine 9 histone H3 tails with native lysine 4 or with lysine 4 changed to alanine (K4AK9). In vitro methylation of the H3 tail peptide resulted in trimethylation of Lys-9 and the reaction is processive. The turnover number (k(cat)) for methylation was 88 and 32 h(-1) on the wild type and K4AK9 histone H3 tail, respectively. The Michaelis constants for wild type and K4AK9 ((K(m)(pep))) were 0.9 and 1.0 microM and for S-adenosyl-L-methionine (K(m)(AdoMet)) were 1.8 and 0.6 microM, respectively. Comparable kinetic constants were obtained for recombinant histone H3. The conversion of K4AK9 di- to trimethyl-lysine was 7-fold slower than methyl group addition to unmethylated peptide. Preincubation studies showed that G9a-AdoMet and G9a-peptide complexes are catalytically active. Initial velocity data with peptide and S-adenosyl-L-methionine (AdoMet) and product inhibition studies with S-adenosyl-L-homocysteine were performed to assess the kinetic mechanism of the reaction. Double reciprocal plots and preincubation studies revealed S-adenosyl-L-homocysteine as a competitive inhibitor to AdoMet and mixed inhibitor to peptide. Trimethylated peptides acted as a competitive inhibitor to substrate peptide and mixed inhibitor to AdoMet suggesting a random mechanism in a Bi Bi reaction for recombinant G9a where either substrate can bind first to the enzyme, and either product can release first.  相似文献   

9.
Andi B  West AH  Cook PF 《Biochemistry》2004,43(37):11790-11795
Kinetic data have been collected suggesting a preferred sequential ordered kinetic mechanism for the histidine-tagged homocitrate synthase (HCS) from Saccharomyces cerevisiae with alpha-ketoglutarate binding before AcCoA and CoA released before homocitrate. Oxaloacetate is also a substrate for HCS, but with lower affinity than alpha-ketoglutarate. In agreement with the ordered kinetic mechanism desulfo-CoA is uncompetitive and citrate is competitive vs alpha-ketoglutarate. Varying AcCoA, citrate is a noncompetitive inhibitor as predicted, but CoA is noncompetitive vs AcCoA suggesting binding of CoA to E:homocitrate and E:alpha-ketoglutarate. The product CoA behaves in a manner identical to the dead-end analogue desulfo-CoA, suggesting an E:alpha-ketoglutarate:CoA dead-end complex. Data further suggest an irreversible reaction overall, in agreement with the downhill nature of the reaction as a result of homocitryl-CoA hydrolysis. Fluorescence titration data generally agree with the steady state data, but show finite binding of CoA and AcCoA to free enzyme, suggesting that the mechanism may be random with a high degree of synergism of binding between the reactants.  相似文献   

10.
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.  相似文献   

11.
p300/CBP-associated factor (PCAF) is a histone acetyltransferase that plays an important role in the remodeling of chromatin and the regulation of gene expression. It has been shown to catalyze preferentially acetylation of the epsilon-amino group of lysine 14 in histone H3. In this study, the kinetic mechanism of PCAF was evaluated with a 20-amino acid peptide substrate derived from the amino terminus of histone H3 (H3-20) and recombinant bacterially expressed PCAF catalytic domain (PCAF(cat)). The enzymologic behavior of full-length PCAF and PCAF(cat) were shown to be similar. PCAF-catalyzed acetylation of the substrate H3-20 was shown to be specific for Lys-14, analogous to its behavior with the full-length histone H3 protein. Two-substrate kinetic analysis displayed an intersecting line pattern, consistent with a ternary complex mechanism for PCAF. The dead-end inhibitor analog desulfo-CoA was competitive versus acetyl-CoA and noncompetitive versus H3-20. The dead-end analog inhibitor H3-20 K14A was competitive versus H3-20 and uncompetitive versus acetyl-CoA. The potent bisubstrate analog inhibitor H3-CoA-20 was competitive versus acetyl-CoA and noncompetitive versus H3-20. Taken together, these inhibition patterns support an ordered BiBi kinetic mechanism for PCAF in which acetyl-CoA binding precedes H3-20 binding. Viscosity experiments suggest that diffusional release of product is not rate-determining for PCAF catalysis. These results provide a mechanistic framework for understanding the detailed catalytic behavior of an important subset of the histone acetyltransferases and have significant implications for molecular regulation of and inhibitor design for these enzymes.  相似文献   

12.
We report the crystal structure of the yeast protein Hpa2 in complex with acetyl coenzyme A (AcCoA) at 2.4 A resolution and without cofactor at 2.9 A resolution. Hpa2 is a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, a family of enzymes with diverse substrates including histones, other proteins, arylalkylamines and aminoglycosides. In vitro, Hpa2 is able to acetylate specific lysine residues of histones H3 and H4 with a preference for Lys14 of histone H3. Hpa2 forms a stable dimer in solution and forms a tetramer upon binding AcCoA. The crystal structure reveals that the Hpa2 tetramer is stabilized by base-pair interactions between the adenine moieties of the bound AcCoA molecules. These base-pairs represent a novel method of stabilizing an oligomeric protein structure. Comparison of the structure of Hpa2 with those of other GNAT superfamily members illustrates a remarkably conserved fold of the catalytic domain of the GNAT family even though members of this family share low levels of sequence homology. This comparison has allowed us to better define the borders of the four sequence motifs that characterize the GNAT family, including a motif that is not discernable in histone acetyltransferases by sequence comparison alone. We discuss implications of the Hpa2 structure for the catalytic mechanism of the GNAT enzymes and the opportunity for multiple histone tail modification created by the tetrameric Hpa2 structure.  相似文献   

13.
The heptatriacontapeptide [Lys([14C]Ac)12, Lys([3H]Ac)16]histone H4-(1–37) was synthesized by the automated solid phase method. This dual-labeled peptide was designed for studies on the mechanism of histone deacetylation. The synthesis was monitored by an automated picrate method; and the product, purified by affinity chromatography and ion exchange chromatography, was homogeneous by polyacrylamide gel electrophoresis and gave excellent amino acid and radiolabel ratios. A purified calf thymus histone deacetylase released acetyl groups from this synthetic peptide at essentially the same rate as from a diacetylated 1–37 peptide derived from native calf thymus histone H4. The relative rate of release of [14C]acetyl from Lys12 and of [3H]acetyl from Lys16 was 1.03 ± 0.03 throughout the time course of the enzymatic assay. Based on these results, possible mechanisms of histone deacetylation are proposed.  相似文献   

14.
The three ribosomal proteins L7, S5, and S18 are included in the rare subset of prokaryotic proteins that are known to be N(alpha)-acetylated. The GCN5-related N-acetyltransferase (GNAT) protein RimI, responsible for the N(alpha)-acetylation of the ribosomal protein S18, was cloned from Salmonella typhimurium LT2 (RimI(ST)), overexpressed, and purified to homogeneity. Steady-state kinetic parameters for RimI(ST) were determined for AcCoA and a peptide substrate consisting of the first six amino acids of the target protein S18. The crystal structure of RimI(ST) was determined in complex with CoA, AcCoA, and a CoA-S-acetyl-ARYFRR bisubstrate inhibitor. The structures are consistent with a direct nucleophilic addition-elimination mechanism with Glu103 and Tyr115 acting as the catalytic base and acid, respectively. The RimI(ST)-bisubstrate complex suggests that several residues change conformation upon interacting with the N terminus of S18, including Glu103, the proposed active site base, facilitating proton exchange and catalysis.  相似文献   

15.
16.
Malate synthase catalyzes the Claisen-like condensation of acetyl-coenzyme A (AcCoA) and glyoxylate in the glyoxylate shunt of the citric acid cycle. The Mycobacterium tuberculosis malate synthase G gene, glcB, was cloned, and the N-terminal His(6)-tagged 80 kDa protein was expressed in soluble form and purified by metal affinity chromatography. A chromogenic 4,4'-dithiodipyridine assay did not yield linear kinetics, but the generation of an active site-directed mutant, C619S, gave an active enzyme and linear kinetics. The resulting mutant exhibited kinetics comparable to those of the wild type and was used for the full kinetic analysis. Initial velocity studies were intersecting, suggesting a sequential mechanism, which was confirmed by product and dead-end inhibition. The inhibition studies delineated the ordered binding of glyoxylate followed by AcCoA and the ordered release of CoA followed by malate. The pH dependencies of k(cat) and k(cat)/K(gly) are both bell-shaped, and catalysis depends on a general base (pK = 5.3) and a general acid (pK = 9.2). Primary kinetic isotope effects determined using [C(2)H(3)-methyl]acetyl-CoA suggested that proton removal and carbon-carbon bond formation were partially rate-limiting. Solvent kinetic isotope effects on k(cat) suggested the hydrolysis of the malyl-CoA intermediate was also partially rate-limiting. Multiple kinetic isotope effects, utilizing D(2)O and [C(2)H(3)-methyl]acetyl-CoA, confirmed a stepwise mechanism in which the step exhibiting primary kinetic isotope effects precedes the step exhibiting the solvent isotope effects. We combined the kinetic data and the pH dependence of the kinetic parameters with existing structural and mutagenesis data to propose a chemical mechanism for malate synthase from M. tuberculosis.  相似文献   

17.
18.
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号