首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

3.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

4.
5.
A cDNA encoding flavanone 3 beta-hydroxylase was isolated from petals of Petunia hybrida. The open reading frame of the nearly full length cDNA coded for a 369-amino acid polypeptide with a calculated Mr of 41,466. The function of this nucleotide sequence was verified by comparison with amino acid sequence of the amino terminus and tryptic peptides from purified plant enzyme, by Northern blotting with RNA from wild type and mutant plants, and by prokaryotic expression yielding an enzymatically active hydroxylase. Computer-aided sequence analysis revealed high similarity (73.5%) to flavanone 3 beta-hydroxylase from barley. Genomic Southern blot analysis showed the presence of only one gene for flavanone 3 beta-hydroxylase in P. hybrida.  相似文献   

6.
7.
类黄酮是植物中的一种重要的次级代谢产物,它与植物的花色形成有关。查尔酮合酶是类黄酮合成途径中的一个关键酶,在植物体内,CHS表达量的增加或减少都可能改变花的。从矮牵牛花瓣的cDNA中克隆到了CHS-A基因,进行了全序列分析,并与国外已报道的CHS-A-序列进行了同源性比较。  相似文献   

8.
利用RT-PCR方法,从非洲菊(Gerbera hybrida)花瓣的CDNA中克隆到了查尔酮合酶(Chalcone Synthase,CHS)基因CHS,进行了序列分析。结果表明,克隆到的CHS基因全长为1197bps,编码一个由398个氨基酸残基组成的多肽,与Helariutta等发表的非洲菊查尔酮合酶CHSI基因的CDNA序列的CHS基因同源性高达99%。进一步将该基因克隆到表达载体pET32a上,经IPTG诱导表达,得到高效表达的融合蛋白。  相似文献   

9.
10.
不同花色矮牵牛细胞色素b5蛋白的cDNA克隆及序列分析   总被引:3,自引:0,他引:3  
以云南不同花色矮牵牛的花瓣为材料,提取总RNA,用Oligo(dT)作为引物反转录合成cDNA第一链。以此为模板,用根据国外报道的矮牵牛细胞色素b5蛋白的cDNA序列设计合成的引物进行PCR扩,均扩增到一条约450bp的片段,分别克隆到pGEM-T载体上。对重组克隆进行序列分析,结果表明所克隆到的矮牛细胞色素b5蛋白的cDNA的编码区均含有447个核苷酸,编码149个氨基酸残基,与国外报道的一致;但其核苷酸及氨基酸的序列与国外报道的有所不同,即与国外的相比,紫红色、蓝紫色矮牵牛中的该cDNA的核苷酸有1个不同,而氨基酸完全相同;粉红色、白色矮牵牛中的3个核苷酸不同,并导致了2个氨基酸的不同。暗示该基因对花色的调控可能与其编码cDNA的一级结构有关。  相似文献   

11.
烟草黄酮醇合成酶基因的克隆及其序列分析   总被引:1,自引:0,他引:1  
根据已知的黄酮醇合成酶cDNA保守序列设计引物,用RT-PCR技术从烟草叶片中扩增获得黄酮醇合成酶cDNA片段,再用RACE方法得到其两端序列。根据获得的序列,设计引物分离得到完整的1188bp的黄酮醇合成酶基因,其开放阅读框编码346个氨基酸。序列分析显示,烟草黄酮醇合成酶与高杯花、矮牵牛和马铃薯的同源性分别为87%、86%和84%,与其它物种中的同源性也在80%左右,表明不同物种中黄酮醇合成酶基因具有高度同源性。此外,在氨基酸水平上,该酶与其它依赖于2-酮戊二酸的双加氧酶及其相关酶也具有同源性。  相似文献   

12.
We have isolated and sequenced two cDNA clones (LESS5 and LESS17) encoding the small subunit of ribulose-1,5-bisphosphate carboxylase of tomato (Lycopersicon esculentum). At the nucleotide level, the protein-coding regions of these genes are 85% conserved, while the untranslated 3' regions are only 55% conserved. Comparison with rbcS genes from other species of Solanaceae suggests that the tomato LESS5 gene, the Nicotiana tabacum NTSS23 gene and the Petunia hybrida SSU8 gene are orthologous members of the rbcS gene family. In addition, the tomato gene LESS17, and the Petunia hybrida gene SSU611, may also be orthologous, since their untranslated 3' regions are related. There is a large difference between the two tomato rbcS genes in the frequency of the CG dinucleotide. This difference may reflect different levels of methylation, and therefore expression, of the tomato genes. Many of the differences involving the CG dinucleotide can be represented as transitions between C and T on the noncoding strand. Such changes are consistent with observations that methylated cytosines are hot-spots for transitions.  相似文献   

13.
14.
15.
16.
17.
Analysis of cDNA clones derived from hypoxic root mRNA of Petunia hybrida has revealed the existence of a third active gene encoding alcohol dehydrogenase in petunia. A combination of RT-PCR and ADH activity gels provide evidence for the selective tissue-specific expression of these three genes in multiple floral organs and hypoxically stressed roots. Expression of adh 1 in the plant appears to be restricted to immature pollen grains; the other two genes are expressed differentially in maternal anther tissues, stigma, petals, and hypoxic root. This work underscores the utility of RT-PCR for distinguishing expression patterns of closely related genes, clarifies the expression patterns exhibited by members of this gene family, and suggests multiple functions for the adh genes of petunia.  相似文献   

18.
We investigated the P450 dependent flavonoid hydroxylase from the ornamental plant Catharanthus roseus. cDNAs were obtained by heterologous screening with the CYP75 Hf1 cDNA from Petunia hybrida. The C. roseus protein shared 68-78% identity with other CYP75s, and genomic blots suggested one or two genes. The protein was expressed in Escherichia coli as translational fusion with the P450 reductase from C. roseus. Enzyme assays showed that it was a flavonoid 3', 5'-hydroxylase, but 3'-hydroxylated products were also detected. The substrate specificity was investigated with the C. roseus enzyme and a fusion protein of the Petunia hybrida CYP75 with the C. roseus P450 reductase. Both enzymes accepted flavanones as well as flavones, dihydroflavonols and flavonols, and both performed 3'- as well as 3'5'-hydroxylation. Kinetics with C. roseus cultures on the level of enzyme activity, protein and RNA showed that the F3'5'H was present in dark-grown cells and was induced by irradiation. The same results were obtained for cinnamic acid 4-hydroxylase and flavanone 3beta-hydroxylase. In contrast, CHS expression was strictly dependent on light, although CHS is necessary in the synthesis of the F3'5'H substrates. Immunohistochemical localization of F3'5'H had not been performed before. A comparison of CHS and F3'5'H in cotyledons and flower buds from C. roseus identified CHS expression preferentially in the epidermis, while F3'5'H was only detected in the phloem. The cell-type specific expression suggests that intercellular transport may play an important role in the compartmentation of the pathways to the different flavonoids.  相似文献   

19.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号