首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

2.
The genomics of disulfide bonding and protein stabilization in thermophiles   总被引:3,自引:0,他引:3  
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.  相似文献   

3.
Oxidative protein folding in eukaryotes: mechanisms and consequences   总被引:29,自引:0,他引:29  
The endoplasmic reticulum (ER) provides an environment that is highly optimized for oxidative protein folding. Rather than relying on small molecule oxidants like glutathione, it is now clear that disulfide formation is driven by a protein relay involving Ero1, a novel conserved FAD-dependent enzyme, and protein disulfide isomerase (PDI); Ero1 is oxidized by molecular oxygen and in turn acts as a specific oxidant of PDI, which then directly oxidizes disulfide bonds in folding proteins. While providing a robust driving force for disulfide formation, the use of molecular oxygen as the terminal electron acceptor can lead to oxidative stress through the production of reactive oxygen species and oxidized glutathione. How Ero1p distinguishes between the many different PDI-related proteins and how the cell minimizes the effects of oxidative damage from Ero1 remain important open questions.  相似文献   

4.
《Free radical research》2013,47(5):494-510
Abstract

Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.  相似文献   

5.
Redox signaling loops in the unfolded protein response   总被引:1,自引:0,他引:1  
Higa A  Chevet E 《Cellular signalling》2012,24(8):1548-1555
The endoplasmic reticulum (ER) is the first compartment of secretory pathway. It plays a major role in ER chaperone-assisted folding and quality control, including post-translational modification such as disulfide bond formation of newly synthesized secretory proteins. Protein folding and assembly takes place in the ER, where redox conditions are distinctively different from the other organelles and are favorable for disulfide formation. These reactions generate the production of reactive oxygen species (ROS) as a byproduct of thiol/disulfide exchange reaction among ER oxidoreductin 1 (Ero1), protein disulfide isomerase (PDI) and ER client proteins, during the formation of disulfide bonds in nascent or incorrectly folded proteins. When uncontrolled, this phenomenon perturbs ER homeostasis, thus aggravating the accumulation of improperly folded or unfolded proteins in this compartment (ER stress). This results in the activation of an adaptive mechanism named the unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER-resident membrane proteins (PERK, IRE1 and ATF6) and regulates the expression of the UPR target genes, which themselves encode ER chaperones, folding enzymes, pro-apoptotic proteins and antioxidants, with the objective of restoring ER homeostatic balance. In this review, we will describe redox dependent activation (ER) and amplification (cytosol) loops that control the UPR and the consequences these regulatory loops have on cell fate and physiology.  相似文献   

6.
Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.  相似文献   

7.
The majority of disulfide-linked cytosolic proteins are thought to be enzymes that transiently form disulfide bonds while catalyzing oxidation-reduction (redox) processes. Recent evidence indicates that reactive oxygen species can act as signaling molecules by promoting the formation of disulfide bonds within or between select redox-sensitive proteins. However, few studies have attempted to examine global changes in disulfide bond formation following reactive oxygen species exposure. Here we isolate and identify disulfide-bonded proteins (DSBP) in a mammalian neuronal cell line (HT22) exposed to various oxidative insults by sequential nonreducing/reducing two-dimensional SDS-PAGE combined with mass spectrometry. By using this strategy, several known cytosolic DSBP, such as peroxiredoxins, thioredoxin reductase, nucleoside-diphosphate kinase, and ribonucleotide-diphosphate reductase, were identified. Unexpectedly, a large number of previously unknown DSBP were also found, including those involved in molecular chaperoning, translation, glycolysis, cytoskeletal structure, cell growth, and signal transduction. Treatment of cells with a wide range of hydrogen peroxide concentrations either promoted or inhibited disulfide bonding of select DSBP in a concentration-dependent manner. Decreasing the ratio of reduced to oxidized glutathione also promoted select disulfide bond formation within proteins from cytoplasmic extracts. In addition, an epitope-tagged version of the molecular chaperone HSP70 forms mixed disulfides with both beta4-spectrin and adenomatous polyposis coli protein in the cytosol. Our findings indicate that disulfide bond formation within families of cytoplasmic proteins is dependent on the nature of the oxidative insult and may provide a common mechanism used to control multiple physiological processes.  相似文献   

8.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

9.
Hatahet F  Ruddock LW 《The FEBS journal》2007,274(20):5223-5234
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo.  相似文献   

10.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

11.
12.
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.  相似文献   

13.
14.
The thiol-disulfide exchange reaction plays a central role in the formation of disulfide bonds in newly synthesized proteins and is involved in many aspects of cellular metabolism. Because the thiolate form of the cysteine residue is the key reactive species, its electrostatic milieu is thought to play a key role in determining the rates of thiol disulfide exchange reactions. While modest reactivity effects have previously been seen in peptide model studies, here, we show that introduction of positive charges can have dramatic effects on disulfide bond formation on a structurally restricted surface. We have studied properties of vicinal cysteine residues in proteins using a model system based on redox-sensitive yellow fluorescent protein (rxYFP). In this system, the formation of a disulfide bond between two cysteines Cys149 and Cys202 is accompanied by a 2.2-fold decrease in fluorescence. Introduction of positively charged amino acids in the proximity of the two cysteines resulted in an up to 13-fold increase in reactivity toward glutathione disulfide. Determination of the individual pK(a) values of the cysteines showed that the observed increase in reactivity was caused by a decrease in the pK(a) value of Cys149, as well as favorable electrostatic interactions with the negatively charged reagents. The results presented here show that the electrostatic milieu of cysteine thiols in proteins can have substantial effects on the rates of the thiol-disulfide exchange reactions.  相似文献   

15.
The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol–disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.  相似文献   

16.
Amino acid sequence analysis of fungal histidine acid phosphatases displaying phytase activity has revealed a conserved eight-cysteine motif. These conserved amino acids are not directly associated with catalytic function; rather they appear to be essential in the formation of disulfide bridges. Their role is seen as being similar to another eight-cysteine motif recently reported in the amino acid sequence of nearly 500 plant polypeptides. An additional disulfide bridge formed by two cysteines at the N-terminus of all the filamentous ascomycete phytases was also observed. Disulfide bridges are known to increase both stability and heat tolerance in proteins. It is therefore plausible that this extra disulfide bridge contributes to the higher stability found in phytase from some Aspergillus species. To engineer an enhanced phytase for the feed industry, it is imperative that the role of disulfide bridges be taken into cognizance and possibly be increased in number to further elevate stability in this enzyme.  相似文献   

17.
18.
Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli   总被引:1,自引:0,他引:1  
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.  相似文献   

19.
20.
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号