首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
A recombinant β-galactosidase from Sulfolobus solfataricus produced galactooligosaccharides (GOS) from lactose by transgalactosylation. The enzyme activity for GOS production was maximal at pH 6.0 and 85°C. The half-lives of the recombinant β-galactosidase at 70, 75, 80, 85, and 90°C were 700, 111, 72, 43, and 2.4 h, respectively, and its deactivation energy was 213 kJ mol−1. The optimal amount of enzyme for effective GOS production was 3.6 U of enzyme ml−1. GOS production increased with increasing lactose concentration, whereas the yield of GOS from lactose was almost constant. The rates of hydrolysis and transgalactosylation reactions increased with increasing temperature but the final concentration of GOS was maximal at 80°C. Under the conditions of pH 6.0, 80°C, 600 g lactose l−1, and 3.6 U enzyme ml−1, 315 g GOS l−1 were obtained for 56 h with a yield of 52.5% (w/w). The β-galactosidase from S. solfataricus produced GOS with the highest concentration and yield among thermostable β-galactosidases reported to date.  相似文献   

2.
Lactase Production from Lactobacillus acidophilus   总被引:1,自引:0,他引:1  
Summary A lactobacillus strain isolated from fermented Ragi (Eleusine coracana Gaertn.) was characterized as Lactobacillus acidophilus. The isolate was found to be homofermentative, slime-forming and a lactase (β-galactosidase) producer. Production, recovery, characterization and performance of lactase were studied at laboratory scale from 100 ml to 5 l under stationary and stirred conditions. 1.5% lactose was found to be the best carbon source for lactase production. The lactose content could be reduced to 0.75% by supplementing with 1% ragi, thus making the media economically more attractive. A 6.5-fold increase (5400 U ml−1) was achieved on scale-up. Performance of the lactase obtained from this strain was found to be slightly better than the commercial lactase produced by Kluyveromyces lactis.  相似文献   

3.
This paper deals with two aspects tightly related to the enzymatic characteristics and expression of four β-galactosidases (BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171. The growth patterns of this strain indicated a preference towards complex (i.e. lactose, galactooligosaccharides (GOSs)) rather than simple carbohydrates (i.e. glucose and galactose) and a collaborative action and synergistic relation of more than one β-galactosidase isoenzyme for either lactose or GOS hydrolysis and subsequent assimilation. Native polyacrylamide gel electrophoresis analysis of protein extracts from cells growing on different carbohydrates (i.e. glucose, lactose or GOS) indicated that two lactose hydrolysing enzymes (BbgI and BbgIII) and one GOS hydrolysing enzyme (BbgII) were constitutively expressed, whereas a fourth lactose hydrolysing enzyme (BbgIV) was induced in the presence of lactose or different GOS fractions. Furthermore, the β-galactosidase expression profiles of B. bifidum cells and the transgalactosylating properties of each individual isoenzyme, with lactose as substrate, clearly indicated that mainly three isoenzymes (BbgI, BbgIII and BbgIV) are implicated in GOS synthesis when whole B. bifidum cells are utilised. Two of the isoenzymes (BbgI and BbgIV) proved to have better transgalactosylating properties giving yields ranging from 42% to 47% whereas the rest (BbgI and BbgIII) showed lower yields (15% and 29%, respectively).  相似文献   

4.
Summary The thermotolerant yeast strain,Kluyveromyces marxianus IMB3 was shown to be capable of growth and ethanol production on lactose containing media at 45°C. On media containing 4% (w/v) lactose, ethanol production increased to 6.0g/l within 50h and this represented 29% of theoretical yield. During growth on lactose containing media the organism was shown to produce a cell-associated β-galactosidase and no significant enzyme could be detected in the extracellular culture filtrate. Addition of β-galactosidase, released fromKluyveromyces marxianus IMB3 cells, to active fermentations, resulted in increasing ethanol production to 53% of theoretical yield at 45°C.  相似文献   

5.
Hydrolysis of whey lactose using CTAB-permeabilized yeast cells   总被引:1,自引:0,他引:1  
Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by β-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to β-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 °C.  相似文献   

6.
Galacto-oligosaccharides (GOS) were synthesized from lactose by immobilized and free -galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP-G) using either focused microwave irradiation or conventional heating. Immobilization of the -galactosidase on to Duolite A-568 increased the synthesis of GOS. GOS selectivity (GOS synthesis/lactose hydrolysis ratio) increased when the water activity of the media was reduced, notably with a high initial lactose concentration but also by using co-solvents in the media. The advantage of microwave heating on GOS formation was also examined. Addition of solvent and carrying out the reaction under microwave irradiation resulted an increase in the production of GOS. The selectivity for GOS synthesis can be increased by 217-fold under microwave irradiation, using immobilized -glucosidase and with added co-solvents such as hexanol.  相似文献   

7.
The aim of this study was to produce galactooligosaccharides (GOS) from lactose using β-galactosidase from Aspergillus oryzae immobilized on a low-pressure plasma-modified cellulose acetate (CA) membrane. Specifically, a novel method was developed for multilayer enzyme immobilization involving polyethyleneimine (PEI)-enzyme aggregate formation and growth on a CA membrane. A large amount of enzyme (997 μg/cm2 membrane) was immobilized with 66% efficiency. The K m value for the immobilized enzyme was estimated to be 48 mM, which indicates decreased affinity for the substrate, whereas the Vmax value was smaller. The immobilized enzyme showed good storage and operational stability. The half-life of the immobilized enzyme on the membrane was about 1 month at 30°C and ∼ 60 h at 60°C. Maximum GOS production of 27% (w/w) was achieved with 70% lactose conversion from 320 g/L of lactose at pH 4.5 and 60°C. Trisaccharides were the major types of GOS formed and accounted for about 75% of the total GOS produced. Based on these results, immobilized enzyme technology could be applied to GOS production from lactose.  相似文献   

8.
In this paper we report on the effect of different concentrations of lactose and galactose in the production of β-galactosidase by Kluyveromyces marxianus CBS6556. The results clearly demonstrate a decrease in enzyme specific activity during cultivation at high concentrations of L-lactose or D-galactose, despite the fact that these carbohydrates are normally used for induction of the β-galactosidase activity. Therefore, maximum induction of β-galactosidase in K. marxianus batch cultures was obtained at low concentrations of the inducer carbohydrates, in the range between 0.5 to 15 mM. Those informations can help to design low cost medium with higher β-galactosidase productivity by K. marxianus cells. Received: 8 August 2001 / Accepted: 15 October 2001  相似文献   

9.
The gene encoding homodimeric β-galactosidase (lacA) from Bacillus licheniformis DSM 13 was cloned and overexpressed in Escherichia coli, and the resulting recombinant enzyme was characterized in detail. The optimum temperature and pH of the enzyme, for both o-nitrophenyl-β-d-galactoside (oNPG) and lactose hydrolysis, were 50°C and 6.5, respectively. The recombinant enzyme is stable in the range of pH 5 to 9 at 37°C and over a wide range of temperatures (4–42°C) at pH 6.5 for up to 1 month. The K m values of LacA for lactose and oNPG are 169 and 13.7 mM, respectively, and it is strongly inhibited by the hydrolysis products, i.e., glucose and galactose. The monovalent ions Na+ and K+ in the concentration range of 1–100 mM as well as the divalent metal cations Mg2+, Mn2+, and Ca2+ at a concentration of 1 mM slightly activate enzyme activity. This enzyme can be beneficial for application in lactose hydrolysis especially at elevated temperatures due to its pronounced temperature stability; however, the transgalactosylation potential of this enzyme for the production of galacto-oligosaccharides (GOS) from lactose was low, with only 12% GOS (w/w) of total sugars obtained when the initial lactose concentration was 200 g/L.  相似文献   

10.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

11.
Whey containing 4.4% (w/v) lactose was inoculated with Kluyveromyces marxianus MTCC 1389 for carrying out studies related to β-galactosidase production. β-galactosidase activity was found to be maximum after 30 h and further incubation resulted in decline in activity. The maximum cell biomass of 2.54 mg mL−1 was observed after 36 h of incubation. Lactose concentration dropped drastically to 0.04 % from 4.40% after 36 h of incubation. Out of the four methods tested for extraction of enzyme, SDS — Chlorofom method was found to be best followed by Toluene — Acetone, sonication and homogenization with glass beads in that order. It could be concluded through this study that SDS — Chloroform is cheap and simple method for enzyme extraction from Kluyveromyces cells, which resulted in higher enzyme activity as compared to the activity observed using the remaining extraction methods. The study could also establish that whey could effectively be utilized for β-galactosidase production thus alleviating water pollution problems caused due to its disposal into the water streams.  相似文献   

12.
The gene coding for β-galactosidase fromEscherichia coli was cloned into plasmid pACT71 containing the replicon from plasmid pAC1 fromAcetobacter pasteurianus. E. coli MC4100,E. coli JM105,E. coli LE392.23 andA. pasteurianus 3614 were transformed with the recombinant plasmid pACB815. Cells were cultivated in LB, YPG and M media supplemented with glucose, glycerol, lactose or ethanol and β-galactosidase activity was detected in the cells and in the cultivation medium. The best substrate for production of β-galactosidase was lactose. To release β-galactosidase fromA. pasteurianus cells amino acids were added to the cultivation medium. The highest secretory activity was achieved using 1.5% glycine after 36 h of cultivation in the M medium.  相似文献   

13.
Yuan T  Yang P  Wang Y  Meng K  Luo H  Zhang W  Wu N  Fan Y  Yao B 《Biotechnology letters》2008,30(2):343-348
A genomic DNA library screen yielded the nucleotide sequence of a 12 kb fragment containing a gene (2067 bp) coding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius ATCC 27009. The β-galactosidase gene was expressed in Pichia pastoris, and up to 90 mg recombinant β-galactosidase/l accumulated in shake flask cultures. Using o-nitrophenyl-β-d-galactopyranoside as a substrate, the optimum pH and temperature of the purified recombinant β-galactosidase were 5.8–6.0 and 70°C, respectively. The enzyme retained 90% of its activity when heated at 70°C for 30 min. Approximately 48% of lactose in milk was hydrolyzed following treatment with the recombinant enzyme over 60 min at 65°C.  相似文献   

14.
Extracellular β-galactosidase produced by a strain of Aspergillus niger van Tiegh was purified to homogeneity using a combination of gel filtration, ion-exchange, chromatofocusing, and hydrophobic interaction chromatographies. The enzyme displayed a temperature optimum of 65 °C and a low pH optimum of between 2.0 and 4.0. The monomeric glycosylated enzyme displayed a molecular mass of 129 kDa and an isoelectric point of 4.7. Protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme shares homology with a previously sequenced A. niger β-galactosidase. Unlike currently commercialised products, the enzyme displayed a high level of stability when exposed to simulated gastric conditions in vitro, retaining 68 ± 2% of original activity levels. This acid-stable, acid-active β-galactosidase was formulated, along with a neutral β-galactosidase from Kluyveromyces marxianus DSM5418, in a novel two-segment capsule system designed to ensure delivery of enzymes of appropriate physicochemical properties to both stomach and small intestine. When subjected to simulated full digestive tract conditions, the twin lactase-containing capsule hydrolyzed, per unit activity, some 3.5-fold more lactose than did the commercial supplemental enzyme. The acid-stable, acid-active enzyme, along with the novel two-segment delivery system, may prove beneficial in the more effective treatment of lactose intolerance.  相似文献   

15.
A recombinant strain of Saccharomyces cerevisiae, secreting -galactosidase from Kluyveromyces lactis, grew efficiently with more than 60 g lactose l–1. The growth rate (0.23 h–1) in a cheese-whey medium was close to the highest reported hitherto for other recombinant S. cerevisiae strains that express intracellular -galactosidase and lactose-permease genes. The conditions for growth and -galactosidase secretion in this medium were optimized in a series of factorial experiments. Best results were obtained at 23 °C for 72 h. Since the recombinant strain produced less than 3% ethanol from the lactose, it was also assayed for the production of fructose 1,6-bisphosphate from cheese whey, and 0.06 g l–1 h–1 were obtained.  相似文献   

16.
Summary β-galactosidase from Bifidobacterium longum CCRC 15708 was first extracted by ultrasonication then purified by Q Fast-Flow chromatography and gel chromatography on a Superose 6 HR column. These steps resulted in a purification of 15.7-fold, a yield of 29.3%, and a specific activity of 168.6 U mg−1 protein. The molecular weight was 357 kDa as determined from Native-PAGE. Using o-nitrophenyl-β-d-galactopyranoside (ONPG) as a substrate, the pH and temperature optima of the purified β-galactosidase were 7.0 and 50 °C, respectively. The enzyme was stable at a temperature up to 40 °C and at pH values of 6.5–7.0. K m and V max for this purified enzyme were noted to be 0.85 mM and 70.67 U/mg, respectively. Na+ and K+ stimulated the enzyme up to 10-fold, while Fe3+, Fe2+, Co2+, Cu2+, Ca2+, Zn2+, Mn2+ and Mg2+ inhibited the activity of β-galactosidase. Furthermore, although glucose, galactose, maltose, or raffinose exerted little or no effect on the β-galactosidase activity, lactose and fructose inhibited the enzyme activity. The effect of lactose on the enzyme activity for ONPG is probably a case of competitive inhibition. A relatively high specific activity of β-galactosidase from B. longum CCRC 15708 could be obtained by Q Fast-Flow chromatography and gel chromatography on a Superose 6 HR column. In some aspects, particularly the activation by monovalent cations, the properties of β-galactosidase of B. longum CCRC 15708 are different from those obtained from other sources. Data collected in the present study are of value and indispensable when β-galactosidase from B. longum CCRC 15708 is employed in practical application.  相似文献   

17.
The effect of some culture variables in the production of β-galactosidase from Escherichia coli in Bacillus subtilis was evaluated. The lacZ gene was expressed in B. subtilis using the regulatory region of the subtilisin gene aprE. The host contained also the hpr2 and degU32 mutations, which are known to overexpress the aprE gene. We found that, when this overproducing B. subtilis strain was grown in mineral medium supplemented with glucose (MMG), β-galactosidase production was partially growth-associated, as 40%–60% of the maximum enzyme activity was produced before the onset of the stationary phase. In contrast, when a complex medium was used, β-galactosidase was produced only at low levels during vegetative growth, whereas it accumulated to high levels during early stationary phase. Compared with the results obtained in complex media, a 20% increase in specific β-galactosidase activity in MMG supplemented with 11.6 g/l glucose was obtained. On the 1-l fermenter scale, a threefold increase in volumetric β-galactosidase activity was obtained when the glucose concentration was varied from 11 g/l to 26 g/l. In addition, glucose feeding during the stationary phase resulted in a twofold increase in volumetric enzyme activity as cellular lysis was prevented. Finally, we showed that oxygen uptake and carbon dioxide evolution rates can be used for on-line determination of the onset of stationary phase, glucose depletion and biomass concentration. Received: 18 April 1996 / Received revision: 27 August 1996 / Accepted: 6 September 1996  相似文献   

18.
The hydrolysis of oligosaccharides and lactose is of great importance to the food industry. Normally, oligosaccharides like raffinose, stachyose, and verbascose which are rich in different plants like soy bean are considered indigestible by the human gut. Moreover, many humans suffer from lactose intolerance due to the absence of effective enzyme that can digest lactose. α-Galactosidase can digest oligosaccharides like raffinose, while β-galactosidases can hydrolyze lactose. Therefore, selection of microorganisms safe for human use and capable of producing high levels of enzymes becomes an attractive task. The objective of this study was to investigate the enhancement of α- and β-galactosidase activity in Lactobacillus reuteri by different metal ions. Ten millimolar of Na+, K+, Fe2+, and Mg2+ and 1 mM of Mn2+ were added separately to the growth culture of six strains of L. reuteri (CF2-7F, DSM20016, MF14-C, MM2-3, MM7, and SD2112). Results showed that L. reuteri CF2-7F had the highest α- and β-galactosidase activity when grown in the medium with added Mn2+ ions (22.7 and 19.3 Gal U/ml, respectively). 0.0274% of Mn2+ ions lead to 27, 18% enhancement of α- and β-galactosidase activity over the control group, and therefore, it could be added to the growth culture of CF2-7F to produce enhanced levels of α- and β-galactosidase activity. The addition of Fe2+ led to a significant (P < 0.01) decrease in the activity of both enzymes for most strains. This study shows that modified culture medium with that 0.0274% Mn2+ can be used to promote the production for α- and β-galactosidase in L. reuteri CF2-7F, which may lead to enhancement of α- and β-galactosidase activity and have a good potential to be used in the food industry.  相似文献   

19.
Growth and β-galactosidase (β-gal) expression were characterized in the yeast Kluyveromyces lactis strain NRRL Y-1118 growing in aerobic chemostat cultures under carbon, nitrogen or phosphate limitation. In lactose or galactose-limited cultures, β-gal accumulated in amounts equivalent to 10–12% of the total cell protein. The induced β-gal expression was repressed when cells were grown under N- or P-limitation. In lactose medium, enzyme levels were 4–8 times lower than those expressed in C-limited cultures. A similar response was observed when galactose was the carbon source. These results suggest that a galactose-dependent signal (in addition to glucose) may have limited induction when cells were grown in carbon-sufficient cultures. Constitutive β-gal expression was highest in lactate-limited and lowest in glucose-limited media and was also repressed in glucose-sufficient cultures. Other K. lactis strains (NRRL Y-1140 and CBS 2360) also showed glucose repression (although with different sensitivity) under non-inducing conditions. We infer that these strains share a common mechanism of glucose repression independent of the induction pathway. The kinetics of β-gal induction observed in C-limited cultures confirms that β-gal induction is a short-term enzyme adaptation process. Applying a lactose pulse to a lactose-limited chemostat culture resulted in ‘substrate-accelerated death’. Immediately after the pulse, growth was arrested and β-gal was progressively inactivated. Yeast metabolism in C-limited cultures was typically oxidative with the substrate being metabolized solely to biomass and CO2. Cells grown under P- or N-limitation, either with glucose or lactose, exhibited higher rates of sugar consumption than C-limited cells, accumulated intracellular reserve carbohydrates and secreted metabolic products derived from the glycolytic pathway, mainly glycerol and ethanol. Received 16 October 1997/ Accepted in revised form 17 April 1998  相似文献   

20.
An improved strain of Pseudomonas sp. ATCC 31461 (Pseudomonas elodea), capable of producing broth viscosities of 11 000 and 4700 mPa s (cP) when grown in enriched whey permeate and enriched sweet whey broths respectively, was isolated. The isolation was by serial transfers of the parent on lactose-rich and sweet whey broths. Maximum viscosities and biopolymer production were observed in 25% (v/v) whey concentration. In whey concentrations of 50% (v/v) or greater, residual glucose was detected in the broth and biopolymer production was low. This strain is capable of totally utilising the lactose in up to 50% (v/v) whey in 64 h. Enzyme activities suggest that the transport of lactose in P. elodea is by the permease system as opposed to the phosphotransferase system. The location of β-galactosidase is mainly intracellular. The improved strain is able to utilise lactose better than the parent and produce 1.6 times more intracellular β-galactosidase activity compared to the parent. Received: 3 May 1996 / Received revision: 8 August 1996 / Accepted: 10 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号