首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction.  相似文献   

2.
3.
4.
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.  相似文献   

5.
6.
Summary Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In conrrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.  相似文献   

7.
Ferrochelatase is the terminal enzyme in the heme biosynthetic pathway. It catalyzes the insertion of ferrous iron into protoporphyrin IX to produce protoheme IX. The crystal structures of ferrochelatase from Saccharomyces cerevisiae in free form, in complex with Co(II), a substrate metal ion, and in complex with two inhibitors, Cd(II) and Hg(I), are presented in this work. The enzyme is a homodimer, with clear asymmetry between the monomers with regard to the porphyrin binding cleft and the mode of metal binding. The Co(II) and Cd(II) complexes reveal the metal binding site which consists of the invariant amino acids H235, E314, and S275 and solvent molecules. The shortest distance to the metal reveals that amino acid H235 is the primary metal binding residue. A second site with bound Cd(II) was found close to the surface of the molecule, approximately 14 A from H235, with E97, H317, and E326 participating in metal coordination. It is suggested that this site corresponds to the magnesium binding site in Bacillus subtilis ferrochelatase. The latter site is also located at the surface of the molecule and thought to be involved in initial metal binding and regulation.  相似文献   

8.
The HXK2 gene product has an important role in controlling carbon catabolite repression in Saccharomyces cerevisiae. We have raised specific antibodies against the hexokinase PII protein and have demonstrated that it is a 58 kDa phosphoprotein with protein kinase activity. The predicted amino acid sequence of the HXK2 gene product has significant homology to the conserved catalytic domain of mammalian and yeast protein kinases. Protein kinase activity was located in a different domain of the protein from the hexose-phosphorylating activity. The hexokinase PII protein level remained unchanged in P2T22D mutant cells (hxk1 HXK2 glk1) growing in a complex medium with glucose. The protein kinase activity of hexokinase PII is regulated by the glucose concentration of the culture medium. Exit from the carbon catabolite repression phase and entry into derepression phase may be controlled, in part, by modulation of the 58 kDa protein kinase activity by changes in cyclic AMP concentration.  相似文献   

9.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H(+)-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

10.
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.  相似文献   

11.
12.
Phosphoenolpyruvate carboxykinase showed high activity in Saccharomyces cerevisiae grown on gluconeogenic carbon sources. Addition of glucose to such cultures caused a rapid loss of the phosphoenolpyruvate carboxykinase activity. Fructose or mannose had the same effect as glucose, while 2-deoxyglucose or galactose were without effect. The inactivation was an irreversible process, since the regain of the activity was dependent of de novo protein synthesis. Cycloheximide did not prevent inactivation. All strains of the genus Saccharomyces tested showed inactivation of their phosphoenolpyruvate carboxykinase upon addition of glucose; this behaviour was not restricted to this genus.Non-Standard Abbreviations FbPase fructose bisphosphatase [EC 3.1.3.11 fructose-1,6-bisphosphate hydrolase] - PEPCK phosphoenolpyruvate carboxykinase [EC 4.1.49 ATP: oxalacetate carboxylase (transphosphorylating)] - YPE yeast-peptone-ethanol A preliminary account of these results was presented at the Fourth International Symposium on Yeasts, Vienna, Austria, July 1974  相似文献   

13.
The kinetics of ethenoadenosine triphosphate (?ATP) as the phosphate donor in the phosphoryl transfer reaction of hexokinase were examined to obtain the Km′s, V's, and Kα's for the nucleotide and sugar. Dissociation constants for eATP and ?ADP with hexokinase were obtained from fluorometric measurements and compared with similar constants obtained kinetically. Other selected nucleoside triphosphates were used as phosphate donors in the hexokinase reaction and their kinetic constants were obtained. Reactions were also performed using two nucleotides simultaneously as phosphorylating substrates for the hexokinase reaction in an attempt to find the individual dissociation constants, Km′s and Ki′s. These were compared with the Km′s obtained from using the nucleotides separately in the hexokinase reaction. From these kinetic and fluorescence binding studies, evidence is presented supporting the postulate that the Km′s are primarily dissociation constants in a random bi-bi mechanism. Analysis of the Km values provides additional evidence to support the importance of the amino group in position 6 on the purine ring as a hydrogen-bond acceptor during binding. It was found that ?CTP was a much better hexokinase substrate than CTP. These observations suggest that the V for this reaction is highly dependent upon the size of the nucleotide.  相似文献   

14.
A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.  相似文献   

15.
Various nucleoside di- and triphosphates have been compared with respect to their ability to protect rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) activity against inactivation by chymotrypsin, glutaraldehyde, heat, and 5,5′-dithiobis(2-nitrobenzoic) acid. ATP could be distinguished from other nucleoside triphosphates in these comparisons, which may be related to the specificity with which ATP is utilized as a substrate. All nucleoside derivatives examined provided substantial protection against two or more of the above inactivating agents, indicating relatively nonspecific binding of nucleotides by brain hexokinase, consistent with a similar lack of specificity in the inhibition of this enzyme by nucleoside derivatives. The fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tetraiodofluorescein (TIF) was enhanced by binding to brain hexokinase. TNS binding was not affected by the presence of various relevant metabolites (Glc, glucose 6-phosphate, ATP), nor did TNS inhibit the enzyme. In contrast, substantial (approximately 70%) decreases in the fluorescence of bound TIF resulted from the addition of various nucleoside derivatives, and TIF served as a competitive inhibitor of brain hexokinase. These observations are consistent with the view that TIF binds to a nucleotide binding site of the enzyme. The inability of nucleotides to totally displace TIF was taken to indicate the existence of an additional TIF binding site (or sites) discrete from the catalytic site, and probably identical to the site(s) at which TNS binds with no effect on catalytic activity. The effects of saturating levels of ATP and ADP were not additive indicating that both compounds were displacing TIF from the same site i.e., a common nucleotide binding site. Glc, mannose, and 2-deoxyglucose greatly enhanced the ability of nucleotides to displace TIF, while fructose, galactose, and N-acetylglucosamine did not, indicating the existence of interactions between hexose and nucleotide binding sites; the hexoses themselves were not effective at displacing TIF. The enhanced binding of nucleotides in the presence of the first three hexoses but not the latter three can be directly correlated with the relative ability of these hexoses to induce specific conformational changes in the enzyme. The hexoses themselves were not effective at displacing TIF. Glucose 6-phosphate and 1,5-anhydroglucitol 6-phosphate could also displace TIF, and as with the nucleotides, a maximum of approximately 70% decrease in fluorescence was observed and the effectiveness of glucose 6-phosphate was enhanced in the presence of Glc. Other hexose 6-phosphates tested were not effective at displacing TIF. The specificity with which hexose 6-phosphates displaced TIF could be correlated with their ability to induce specific conformational change in the enzyme. The results are discussed as they relate to the kinetic mechanism and allosteric regulation by nucleotides that have been proposed for this enzyme.  相似文献   

16.
The mechanism of inactivation of hexokinase PII of Saccharomyces cerevisiae by D-xylose was characterized. Inactivation was dependent on the presence of MgATP and was irreversible. Inactivation involved phosphorylation of the protein. Observation of the carbon catabolite repression of selected enzymes showed that invertase and maltase synthesis were not repressed when hexokinase PII was phosphorylated.  相似文献   

17.
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.  相似文献   

18.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

19.
Isoenzyme 2 of hexokinase functions in sugar sensing and glucose repression in Saccharomyces cerevisiae. The degree of in vivo phosphorylation of hexokinase 2 at serine-14 is inversely related to the extracellular glucose concentration [Vojtek, A. B., and Fraenkel, D. G. (1990) Eur. J. Biochem. 190, 371-375]; however, a physiological role of the modification causing the dissociation of the dimeric enzyme in vitro [as effected by a serine-glutamate exchange at position 14; Behlke et al. (1998) Biochemistry 37, 11989-11995] is unclear. This paper describes a comparative stopped-flow kinetic and sedimentation equilibrium analysis performed with native unphosphorylated hexokinase 2 and a permanently pseudophosphorylated glutamate-14 mutant enzyme to determine the functional consequences of phosphorylation-induced enzyme dissociation. The use of a dye-linked hexokinase assay monitoring proton generation allowed the investigation of the kinetics of glucose phosphorylation over a wide range of enzyme concentrations. The kinetic data indicated that monomeric hexokinase represents the high-affinity form of isoenzyme 2 for both glycolytic substrates. Inhibition of glucose phosphorylation by ATP [Moreno et al. (1986) Eur. J. Biochem. 161, 565-569] was only observed at a low enzyme concentration, whereas no inhibition was detected at the high concentration of hexokinase 2 presumed to occur in the cell. Pseudophosphorylation by glutamate substitution for serine-14 increased substrate affinity at high enzyme concentration and stimulated the autophosphorylation of isoenzyme 2. The possible role of hexokinase 2 in vivo phosphorylation at serine-14 in glucose signaling is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号