首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explain the inhibitory action of polyelectrolytes on enzymes and, in particular, to define potentially reactive zones for the binding of polyelectrolyte, the electric potential of enzymes lactate dehydrogenase and glutamate dehydrogenase was calculated using the solution of the Poisson-Boltzmann equation by a numerical method with the use of the Gauss-Seidel relaxation method at three pH values: 6.5, 7.0, and 8.0 and three values of ionic strength: 50, 100, and 150 mm. On the basis of these calculations and their visualization, representative sites for favorable binding of polyanions were determined as extended areas on the surface of proteins with the positive potential in the neutral pH region. It was shown that there is a correlation between the area of positive potential and the efficiency of enzyme inactivation for a number of pH values and concentrations of salt for two enzymes. The calculations performed allowed one to explain the inhibitory action of polyelectrolytes on the specified enzymes to understand the difference between the values of polyelectrolyte inactivation constants for the two enzymes and estimate the minimal areas of the positive potential on the protein surface that provide their effective inhibition.  相似文献   

2.
D G Wallace 《Biopolymers》1990,29(6-7):1015-1026
Electrostatic energies of interaction between type I collagen molecules were calculated, using models developed by Timasheff and Hill. These energies, along with a contribution from hydrophobic forces, were then incorporated into an equation due to Flory that described phase equilibria of rod-like polymers. The Flory formalism in turn permitted a calculation of the overall free energy of fibril formation (delta Ff), and an assessment of the relative contribution of electrostatic and hydrophobic forces to delta Ff. Lastly, delta Ff was used in a nucleation-growth model relating halftimes of fibril formation (t1/2) to ionic strength (I) and temperature. Because the theory provided no basis for setting absolute levels of the energetic contributions, five parameters in the model had to be derived from experimental data. Based on the fit of theory to experimental results both for intact and pepsinized collagen, it was found that very low electrostatic energies (about -1 kcal/mole per collagen molecule) were sufficient to explain experimental t1/2 vs I relationships. This energy is equivalent to 1 close charge-pair interaction per molecule and appears to be lower than the energy assignable to hydrophobic interactions.  相似文献   

3.
Thermodynamics and kinetics of base-stacking interactions   总被引:1,自引:0,他引:1  
  相似文献   

4.
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes − 2.3 kcal mol 1 to − 0.9 kcal mol 1 (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of + 1.3 kcal mol 1. Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.  相似文献   

5.
6.
Jiang YL  Ichikawa Y  Song F  Stivers JT 《Biochemistry》2003,42(7):1922-1929
The reaction catalyzed by the DNA repair enzyme uracil DNA glycosylase (UDG) proceeds through an unprecedented stepwise mechanism involving a positively charged oxacarbenium ion sugar and uracil anion leaving group. Here we use a novel approach to evaluate the catalytic contribution of electrostatic interactions between four essential phosphodiester groups of the DNA substrate and the cationic transition state. Our strategy was to substitute each of these phosphate groups with an uncharged (R)- or (S)-methylphosphonate linkage (MeP). We then compared the damaging effects of these methylphosphonate substitutions on catalysis with their damaging effects on binding of a cationic 1-azadeoxyribose (1-aza-dR(+)) oxacarbenium ion analogue to the UDG-uracil anion binary complex. A plot of log k(cat)/K(m) for the series of MeP-substituted substrates against log K(D) for binding of the 1-aza-dR(+) inhibitors gives a linear correlation of unit slope, confirming that the electronic features of the transition state resemble that of the 1-aza-dR(+), and that the anionic backbone of DNA is used in transition state stabilization. We estimate that all of the combined phosphodiester interactions with the substrate contribute 6-8 kcal/mol toward lowering the activation barrier, a stabilization that is significant compared to the 16 kcal/mol catalytic power of UDG. However, unlike groups of the enzyme that selectively stabilize the charged transition state by an estimated 7 kcal/mol, these phosphodiester groups also interact strongly in the ground state. To our knowledge, these results provide the first experimental evidence for electrostatic stabilization of a charged enzymatic transition state and intermediate using the anionic backbone of DNA.  相似文献   

7.
The three-dimensional structure of para-fluoro-D-phenylalanine (PFF) in its complex with the zinc protease carboxypeptidase A (CPA) has been determined at 2.0 A resolution by X-ray crystallographic methods. The structure reveals that the para-fluorobenzyl side chain of the inhibitor is buried in the S'1 hydrophobic pocket of the enzyme. Intriguingly, this ligand molecule inhibits CPA better than its amino acid analogues D-phenylalanine (D-Phe) and D-tyrosine (D-Tyr) by factors of 4 and 5, respectively. Moreover, the para-fluoro derivative is a better inhibitor than para-chloro- or para-bromo-D-phenylalanine by nearly a factor of 50. This result is consistent with binding enhancements realized in other protein complexes involving halogenated ligand molecules, regardless of whether the carbon-halogen group of the ligand makes specific polar interactions or non-specific hydrophobic interactions with its protein host. In the CPA-PFF complex, the fluorine atom of PFF does not make any direct polar contact with the enzyme, and the contact surface area of the protein-ligand interface is only slightly greater, although more hydrophobic, than that of D-Phe and D-Tyr. Therefore, we conclude that the slight binding enhancement measured for PFF relative to D-Phe and D-Tyr arises predominantly from increasing the hydrophobic character of the protein-ligand interface, and not solely from increasing the degree of protein-ligand contact.  相似文献   

8.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.  相似文献   

9.
Electrostatic interactions have a central role in some biological processes, such as recognition of charged ligands by proteins. We characterized the binding energetics of yeast triosephosphate isomerase (TIM) with phosphorylated inhibitors 2-phosphoglycollate (2PG) and phosphoglycolohydroxamate (PGH). We determined the thermodynamic parameters of the binding process (Kb, ΔGb, ΔHb, ΔSb and ΔCp) with different concentrations of NaCl, using fluorimetric and calorimetric titrations in the conventional mode of ITC and a novel method, multithermal titration calorimetry (MTC), which enabled us to measure ΔCp in a single experiment. We ruled out specific interactions of Na+ and Cl- with the native enzyme and did not detect significant linked protonation effects upon the binding of inhibitors. Increasing ionic strength (I) caused Kb, ΔGb and ΔHb to become less favorable, while ΔSb became less unfavorable. From the variation of Kb with I, we determined the electrostatic contribution of TIM−2PG and TIM−PGH to ΔGb at I = 0.06 M and 25 °C to be 36% and 26%, respectively. The greater affinity of PGH for TIM is due to a more favorable ΔHb compared to 2PG (by 19-24 kJ mol-1 at 25 °C). This difference is compatible with PGH establishing up to five more hydrogen bonds with TIM. Both binding ΔCps were negative, and less negative with increasing ionic strength. ΔCps at I = 0.06 M were much more negative than predicted by surface area models. Water molecules trapped in the interface when ligands bind to protein could explain the highly negative ΔCps. Thermodynamic binding functions for TIM−2PG changed more with ionic strength than those for TIM−PGH. This greater dependence is consistent with linked, but compensated, protonation equilibriums yielding the dianionic species of 2PG that binds to TIM, process that is not required for PGH.  相似文献   

10.
11.
Coulombic interactions between charges on the surface of proteins contribute to stability. It is difficult, however, to estimate their importance by protein engineering methods because mutation of one residue in an ion pair alters the energetics of many interactions in addition to the coulombic energy between the two components. We have estimated the interaction energy between two charged residues, Asp-12 and Arg-16, in an alpha-helix on the surface of a barnase mutant by invoking a double-mutant cycle involving wild-type enzyme (Asp-12, Thr-16), the single mutants Thr----Arg-16 and Asp----Ala-12, and the double mutant Asp----Ala-12, Thr----Arg-16. The changes in free energy of unfolding of the single mutants are not additive because of the coulombic interaction energy. Additivity is restored at high concentrations of salt that shield electrostatic interactions. The geometry of the ion pair in the mutant was assumed to be the same as that in the highly homologous ribonuclease from Bacillus intermedius, binase, which has Asp-12 and Arg-16 in the native enzyme. The ion pair does not form a hydrogen-bonded salt bridge, but the charges are separated by 5-6 A. The mutant barnase containing the ion pair Asp-12/Arg-16 is more stable than wild type by 0.5 kcal/mol, but only a part of the increased stability is attributable to the electrostatic interaction. We present a formal analysis of how double-mutant cycles can be used to measure the energetics of pairwise interactions.  相似文献   

12.
The sequence of a DNA molecule is known to influence its secondary structure and flexibility. Using a combination of bulk and single-molecule techniques, we measure the structural and mechanical properties of two DNAs which differ in both sequence and base-stacking arrangement in aqueous buffer, as revealed by circular dichroism: one with 50% G·C content and B-form and the other with 70% G·C content and A-form. Atomic force microscopy measurements reveal that the local A-form structure of the high-G·C DNA does not lead to a global contour-length decrease with respect to that of the molecule in B-form although it affects its persistence length. In the presence of force, however, the stiffness of high-G·C content DNA is similar to that of balanced-G·C DNA as magnetic and optical tweezers measured typical values for the persistence length of both DNA substrates. This indicates that sequence-induced local distortions from the B-form are compromised under tension. Finally, high-G·C DNA is significantly harder to stretch than 50%-G·C DNA as manifested by a larger stretch modulus. Our results show that a local, basepair configuration of DNA induced by high-G·C content influences the stretching elasticity of the polymer but that it does not affect the global, double-helix arrangement.  相似文献   

13.
Long-range interactions are known to play an important role in highly polar biomolecules like DNA. In molecular dynamics simulations of nucleic acids and proteins, an accurate treatment of the long-range interactions are crucial for achieving stable nanosecond trajectories. In this report, we evaluate the structural and dynamic effects on a highly charged oligonucleotide in aqueous solution from different long-range truncation methods. Two group-based truncation methods, one with a switching function and one with a force-switching function were found to fail to give accurate stable trajectories close to the crystal structure. For these group-based truncation methods, large root mean square (rms) deviations from the initial structure were obtained and severe distortions of the oligonucleotide were observed. Another group-based truncation scheme, which used an abrupt truncation at 8. 0 A or at 12.0 A was also investigated. For the short cutoff distance, the conformations deviated far away from the initial structure and were significantly distorted. However, for the longer cutoff, where all necessary electrostatic interactions were included, the trajectory was quite stable. For the particle mesh Ewald (PME) truncation method, a stable DNA simulation with a heavy atom rms deviation of 1.5 A was obtained. The atom-based truncation methods also resulted in stable trajectories, according to the rms deviation from the initial B-DNA structure, of between 1.5 and 1.7 A for the heavy atoms. In these stable simulations, the heavy atom rms deviations were approximately 0.6-1.0 A lower for the bases than for the backbone. An increase of the cutoff radius from 8 to 12 A decreased the rms deviation by approximately 0.2 A for the atom-based truncation method with a force-shifting function, but increased the computational time by a factor of 2. Increasing the cutoff from 12 to 18 A for the atom-based truncation method with a force-shifting function requires 2-3 times more computational time, but did not significantly change the rms deviation. Similar rms deviations from the initial structure were found for the atom-based method with a force-shifting function and for the PME method. The computational cost was longer for the PME method with a cutoff of 12. 0 A for the direct space nonbonded calculations than for the atom-based truncation method with a force-shifting function and a cutoff of 12.0 A. If a nonperiodic boundary, e.g., a spherical boundary, was used, a considerable speedup could be achieved. From the rms fluctuations, the terminal nucleotides and especially the cytidines were found to be more flexible than the nonterminal nucleotides. The B-DNA form of the oligonucleotide was maintained throughout the simulations and is judged to depend on the parameters of the energy function and not on the truncation method used to handle the long-range electrostatic interactions. To perform accurate and stable simulations of highly charged biological macromolecules, we recommend that the atom-based force-shift method or the PME method should be used for the long-range electrostatics interactions.  相似文献   

14.
The intrinsic solvent contribution to the free energy of protein-ligand interactions in solution is shown to be related to a free energy per unit area term, obtained from analysis of the solution to gas phase process, and the change in accessible area on association. Analysis of the free energy data on a per unit area basis for the solution to gas phase process leads to the conclusion that the aliphatic CH2 group is only slightly intrinsically hydrophobic, δΔG°/A?2 = 6 cal mol?1A?2, whereas the aromatic compound are actually intrinsically hydrophilic, δΔG°/A?2 = -26 cal mol?1A?2. This leads to the conclusion that, for the interaction of benzene, naphthalene and anthracene with the binding site of α-chymotrypsin, the ligand-solvent free energy contribution is actually unfavorable. Since the protein-solvent contribution is small or unfavorable, the central conclusion is that the solvent contribution to protein-ligand interactions is small or unfavorable and that it is the protein-ligand non-bonded interactions that provide the driving force for association.  相似文献   

15.
Differential scanning calorimetry was used to directly determine the transition enthalpies accompanying the duplex-to-single-strand transition of poly[d(AT)], poly(dA)·poly(dT), poly[d(AC)]·poly[d(TG)], and d(GCGCGC). The calorimetric data allow us to define the following average base-stacking enthalpies:
Interaction ΔH (kcal/stack)
AC/TG, TG/AC 5.6
AT/TA, TA/AT 7.1
AA/TT 8.6
GC/CG, CG/GC 11.9
Comparison with published data on the corresponding RNA interactions reveals remarkably good agreement. By assuming transition enthalpies to result from the pairwise disruption of nearest-neighbor stacking interactions, we used the enthalpy data listed above to predict the transition enthalpies for three oligomeric DNA duplexes. Excellent agreement was found between the predicted and the calorimetrically determined values.  相似文献   

16.
Dostál L  Misselwitz R  Welfle H 《Biochemistry》2005,44(23):8387-8396
Solution properties of Arc repressors (wild-type and F10H variant) from Salmonella bacteriophage P22 and their complexes with operator DNA (Arc-wt-DNA and Arc-F10H-DNA) were characterized by circular dichroism, fluorescence, and Raman difference spectroscopy and compared with the crystal structures of free and DNA-bound Arc repressors (wild-type and F10V variant). From the crystal structure of Arc-wt-operator DNA complex, it is known that amino acids Phe10/10' flip out of the hydrophobic protein core, and in the Arc-F10V-DNA complex, the methyl groups of Val10/10' rotate toward the DNA. Arc-wt and Arc-F10H significantly perturb the Raman signatures of the operator DNA upon complex formation. The two proteins induce similar changes in the DNA spectra. Raman markers in the difference spectra (spectrum of the complex minus spectra of DNA and Arc) indicate binding of Arc in the major groove, several direct contacts, e.g., hydrogen bonds of protein residues with bases, and slight perturbations of the deoxyribose ring systems that are consistent with bending of the operator DNA. Trp14, the only one tryptophan of Arc repressor monomers, serves as a very sensitive tool for changes of the hydrophobic core of the protein. The Raman spectra identify in the free Arc-F10H variant a largely different chi(2,1) rotation angle of Trp14 compared to that in wild-type Arc. In the Arc-wt-DNA and Arc-F10H-DNA complexes, however, the Trp14 chi(2,1) rotation angles are similar in both proteins. Furthermore, in both complexes, a strengthening of the van der Waals interactions of the aromatic ring of Trp14 is indicated compared to these interactions in the free proteins. According to the fluorescence and Raman data, His10 is buried in the hydrophobic core of free Arc-F10H, resembling the "core" conformation of Phe10 in Arc-wt, but His10 is looped out in the complex with DNA resembling the "bound" conformation of Phe10 in the Arc-wt-operator DNA complex.  相似文献   

17.
A series of synthetic peptides have been studied as models for non-specific protein-DNA interactions. In an alpha-helical conformation, the charged amino acid residues of the N-terminal 24 residues of RecA protein are asymmetrically distributed; at neutral pH there is a +4 charge on one face of the helix and a -3 charge on the other face. Modeling suggests that the positive face of the helix can bind five DNA phosphate groups by electrostatic interactions. Circular dichroism (c.d.) spectra indicate that the analogous peptide, Rec24 (AIDENKQKALAAALGQIEKQFGKG-amide), is largely unstructured in water but becomes highly helical in the presence of DNA. Peptide titrations of fluorescent etheno-DNA confirm that the changes in the c.d. spectrum of the peptide are associated with binding, although a dependence of the c.d. signal on the degree of DNA saturation is observed, indicating that peptide can be bound in more than one conformation. At saturation the peptide binds to 5.0(+/- 0.5) DNA phosphate groups as predicted and the electrostatic nature of the binding is confirmed by a strong dependence on salt concentration. A "mutant" peptide where an acidic glutamate residue replaces an alanine on the basic face of the Rec24 helix exhibits weaker binding to single-stranded DNA, also consistent with the electrostatic nature of the proposed peptide-DNA interaction. Extending Rec24 by ten amino acid residues, where the additional residues do not participate in the helical motif, does not noticeably affect binding. Thus, we show experimentally that an asymmetric charge distribution on an alpha-helix can represent an important element for binding nucleic acids.  相似文献   

18.
In the association of electron transfer proteins, electrostatics has been proposed to play a role in maintaining the stability and specificity of the biomolecular complexes formed. An excellent model system is the interaction between mammalian cytochrome b5 and cytochrome c, in which the X-ray structures of the individual components reveal a complementary asymmetry of charges surrounding their respective redox centers. Determining the exact extent of the electrostatic interactions and identifying the specific residues involved in the formation of the electron transfer complex has proved more elusive. We report herein the utilization of high-pressure techniques, together with site-directed mutagenesis, to provide a map of the interaction domains in biomolecular complex formation. The application of high pressure disrupts macromolecular associations since dissociation of the complex results in a decreased volume of the system due to the solvation of charges that had been previously sequestered in the interface region and force solvation of hydrophobic surfaces. Site-directed mutagenesis of a totally synthetic gene for rat liver cytochrome b5, which expresses this mammalian protein in Escherichia coli as a hemecontaining soluble component, was used to selectively alter negatively charged residues of cytochrome b5 to neutral amide side-chains. We have demonstrated that the interaction domain of cytochrome b5 with cytochrome c can be mapped from a comparison of dissociation volumes of these modified cytochrome b5-cytochrome c complexes with the native complex. Using these techniques we can specifically investigate the role of particular residues in the equilibrium association of these two electron transfer proteins. Single-point mutations in the interaction domain give nearly identical effects on the measured dissociation volumes, yet removal of acidic residues outside the recognition surface yield volumes similar to wild-type protein. Multiple mutations in the proposed protein-protein interaction site are found to allow greater solvent-accessibility of the interface as reflected in a diminution in the volume changes on subsequent charge removal. This is indicative that the interprotein salt-bridges in this complex provide a mechanism for a greater exclusion of solvent from the interfacial domain of the complex, resulting in a more stable association.  相似文献   

19.
In this work, we demonstrate that the inclusion of long-range interactions has a significant impact on the estimation of ligand–protein binding energies. Within the scope of the electrostatically embedded adaptation of the molecular fragmentation with conjugated caps (EE-AMFCC) scheme, we unveil the role played by long-range contributions in distinct levels of quantum mechanical calculations. As a prototypical system, we consider ibuprofen coupled to the human serum albumin. In particular, we show that some relevant ligand–residue interaction energies can only be accurately captured in density functional theory (DFT) approaches when the electrostatic background is properly represented by an explicit point charge distribution.
Graphical Abstract (left) The binding site FA3/FA4 of HSA containing the attached IBU. (right) Absolute value of difference between the biding energies calculated including the electrostatic embedding and the energies calculated without the electrostatic embedding using the HF, B3LYP, CAM-B3LYP, and MP2 methodologies
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号