首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum toxin is a zinc-dependent endoprotease that acts on vulnerable cells to cleave polypeptides that are essential for exocytosis. To exert this poisoning effect, the toxin must proceed through a complex sequence of events that involves binding, productive internalization, and intracellular expression of catalytic activity. Results presented in this study show that soluble chelators rapidly strip Zn(2+) from its binding site in botulinum toxin, and this stripping of cation results in the loss of catalytic activity in cell-free or broken cell preparations. Stripped toxin is still active against intact neuromuscular junctions, presumably because internalized toxin binds cytosolic Zn(2+). In contrast to soluble chelators, immobilized chelators have no effect on bound Zn(2+), nor do they alter toxin activity. The latter finding is because of the fact that the spontaneous loss of Zn(2+) from its coordination site in botulinum toxin is relatively slow. When exogenous Zn(2+) is added to toxin that has been stripped by soluble chelators, the molecule rebinds cation and regains catalytic and neuromuscular blocking activity. Exogenous Zn(2+) can restore toxin activity either when the toxin is free in solution on the cell exterior or when it has been internalized and is in the cytosol. The fact that stripped toxin can reach the cytosol means that the loss of bound Zn(2+) does not produce conformational changes that block internalization. Similarly, the fact that stripped toxin in the cytosol can be reactivated by ambient Zn(2+) or exogenous Zn(2+) means that productive internalization does not produce conformational changes that block rebinding of cation.  相似文献   

2.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

3.
Cells of Ustilago maydis containing double-stranded RNA viruses secrete a virus-encoded toxin to which other cells of the same species and related species are sensitive. Mutants affected in the expression of the KP6 toxin were characterized, and all were viral mutants. A temperature-sensitive nonkiller mutant indicated that the toxin consists of two polypeptides, 12.5K and 10K, that are essential for the toxic activity. The temperature-sensitive nonkiller mutant was affected in the expression of the 10K polypeptide, and its toxic activity was restored by the addition of the 10K polypeptide to its secreted inactive toxin. These results led to the reexamination of other mutants that were known to complement in vitro. Each was found to secrete one of the two polypeptides. Here we show for the first time that P6 toxin consists of two polypeptides that do not interact in solution, but both are essential for the toxic effect. Studies on the interaction between the two polypeptides indicated that there are no covalent or hydrogen bonds between the polypeptides. Toxin activity is not affected by the presence of 0.3 M NaCl in the toxin preparations and in the medium, suggesting that no electrostatic forces are involved in this interaction. Also, the two polypeptides do not share common antigenic determinants. The activity of the two polypeptides appears to be dependent on a sequential interaction with the target cell, and it is the 10K polypeptide that initiates the toxic effect. The similarity of the U. maydis virus-encoded toxin to that of Saccharomyces cerevisiae is discussed.  相似文献   

4.
Published data on insecticidal activity of crystal proteins from Bacillus thuringiensis are incorporated into the Bt toxin specificity relational database. To date, 125 of the 174 holotype known toxins have been tested in ∼1700 bioassays against 163 test species; 49 toxins have not been tested at all; 59 were tested against 71 Lepidoptera species in 1182 bioassays; 53 toxins were tested against 23 Diptera species in 233 bioassays; and 47 were tested against 39 Coleoptera species in 190 bioassays. Activity spectra of the tested toxins were summarized for each order. Comparisons of LC50 values are confounded by high variability of the estimates, mostly due to within-species variation in susceptibility, and errors associated with estimation of toxin protein content. Limited analyses suggest that crystal protein toxicity is not affected by quarternary toxin rank or host used for gene expression, but that pre-ingestion treatment by solubilization or enzymatic processing has a large effect. There is an increasing number of toxin families with cross-order activity, as 15 of the 87 families (secondary rank) that are pesticidal are active against more than one order. Cross-order activity does not threaten environmental safety of B. thuringiensis-based pest control because toxins tend to be much less toxic to taxa outside the family’s primary specificity range.  相似文献   

5.
Membranes prepared from rabbit neutrophils exhibit GTPase activity which can be stimulated by the chemotactic factor fMet-Leu-Phe. The maximum contribution of the ATPase activities to the basal and the fMet-Leu-Phe-stimulated GTPase activities are less than 20% and 9%, respectively. The basal GTPase activity has a Vmax = 34.2 +/- 1.3 (pmol/mg protein, min) and a Km = 0.39 +/- 0.03 microM; and the fMet-Leu-Phe-stimulated has a Vmax = 52.3 +/- 2.5 (pmol/mg protein, min), and a Km = 0.29 +/- 0.02 microM. The GTPase activity can be stimulated by fMet-Leu-Phe and leukotriene B4. Unlike these two chemotactic factors, concanavalin A does not stimulate this GTPase activity. In addition, the rise in intracellular concentration of free calcium produced by concanavalin A is not inhibited by pertussis toxin treatment. Both the basal and stimulated GTPase activities are affected by pertussis toxin, cholera toxin and N-ethylmaleimide.  相似文献   

6.
Transglutaminase activity in human peripheral lymphocytes is enhanced after incubation of the cells with concanavalin A. Streptococcal proliferative factor toxin (erythrogenic toxin) from Streptococcus pyogenes and Toxic shock syndrome toxin from Staphylococcus aureus were purified and tested for their ability to enhance transglutaminase activity. Mononuclear leukocyte transglutaminase activity was enhanced 3–5-fold 30 min after incubation with either toxin. Enhancement occurred only when toxin was incubated with intact cells; addition of toxin to cell lysates was without effect. Transglutaminase was not measurable extracellularly. Histamine and dansyl cadaverine, competitive substrates for transglutaminase, inhibited [3H]putrescine incoporation into casein and [3H]thymidine incorporation into DNA. Incubation of lymphocytes with cycloheximide and either toxin or concanavalin A did not inhibit enzyme activity. These bacterial toxins, like phytomitogens, may perturb the cellular membrane and mediate their effect by transglutaminase-mediated cross-linking of membrane proteins.  相似文献   

7.
The activity of B. pertussis toxin has been tested in the continuous culture of CHO (Chinese hamster ovary) cells. The in vitro method of testing B. pertussis toxin is rapid, highly sensitive and specific. The unit of activity of B. pertussis toxin is higher than in mouse tests by several orders. The specificity of the action of B. pertussis toxin on CHO cells has been confirmed by the test of the neutralization of the toxicity effect with antiserum.  相似文献   

8.
A simple biochemical procedure was obtained for studying metabolism ofCorynebacterium diphtheriae during submerged cultivation based on the modification of the assay of dehydrogenase activity using 2,3,5-triphenyltetrazolium chloride as redox indicator. Results obtained by the estimation of the dehydrogenase activity using TTC are in a good accordance with oxygen consumption assayed manometrically. By following dehydrogenase activity in submerged cultivations of a production strain ofCorynebacterium diphtheriae PW8-Weissensee we found that a massive toxin production is connected with the decrease of the activity of cells. This fall of activity occurs yet during the exponential phase of growth. Especially a sudden fall of succindehydrogenase activity exactly indicates the beginning of a considerable toxin accumulation in the medium. The presence of inhibitory concentrations of iron ions in the medium not only increases the level of dehydrogenase activity but changes its whole kinetics. A retarded and irregular fall of the activity occurs instead of a sharp one typical for good toxin production.  相似文献   

9.
Cellular proliferation of rat glioma C6 BU1 cells in tissue culture is dependent on the presence of either calf or foetal-calf serum in the medium. Foetal-calf serum stimulated a high-affinity GTPase in membranes derived from C6 BU1 cells. Pretreatment of the cells with pertussis toxin decreased the high-affinity GTPase activity substantially, and attenuated the foetal-calf-serum-stimulated increase in this GTPase activity. Cholera toxin, in contrast, did not modulate the response to foetal-calf serum. Foetal-calf serum did not inhibit adenylate cyclase activity in membranes of these cells, indicating that the G-protein that was stimulated by foetal-calf serum was not Gi (the inhibitory one). Although the nature of the specific component of foetal-calf serum responsible for this pertussis-toxin-sensitive receptor-mediated stimulation of high-affinity GTPase activity has not been identified, it was mimicked neither by bombesin, which can stimulate inositol phospholipid turnover via a guanine nucleotide binding protein, nor by platelet-derived growth factor, which is present in substantial concentrations in foetal-calf serum. This report represents the first demonstration of a pertussis-toxin-substrate-mediated response in this cell line and provides further evidence that G-proteins other than Gi can be functionally inactivated by pertussis toxin.  相似文献   

10.
Basal plasma renin activity (PRA) was not modified by pertussis toxin administration. On the contrary, the modulation of PRA by adrenergic amines was markedly affected by the toxin. Administration of epinephrine did not modified PRA in the controls but markedly increased it in toxin-treated rats. This effect of epinephrine was reproduced in control rats when yohimbine was given before the catecholamine. Clonidine decreased PRA to a much more significant extent in control rats than in animals treated with the toxin. Isoproterenol stimulated PRA to a greater level in toxin-treated rats. Our data indicates that pertussis toxin blocks the alpha 2-adrenergic modulation of renin release and magnifies the ability of beta adrenergic activation to stimulate PRA.  相似文献   

11.
Conformation and activity of delta-lysin and its analogs   总被引:1,自引:0,他引:1  
Dhople VM  Nagaraj R 《Peptides》2005,26(2):217-225
Delta-Lysin is a 26-residue hemolytic peptide secreted by Staphylococcus aureus. Unlike the bee venom peptide melittin, delta-lysin does not exhibit antibacterial activity. We have synthesized delta-lysin and several analogs wherein the N-terminal residues of the toxin were sequentially deleted. The toxin has three aspartic acids, four lysines and no prolines. Analogs were also generated in which all the aspartic acids were replaced with lysines. A proline residue was introduced in the native sequences as well as in the analogs where aspartic acids were replaced with lysines. We observed that 20- and 22-residue peptides corresponding to residues 7-26 and 5-26 of delta-lysin, respectively, had greater hemolytic activity than the parent peptide. These shorter peptides, unlike delta-lysin, did not self-associate to adopt alpha-helical conformation in water, at lytic concentrations. Introduction of proline or substitution of aspartic acids by lysines resulted in loss in propensity to adopt helical conformation in water. When proline was introduced in the peptides corresponding to the native toxin sequence, loss of hemolytic activity was observed. Substitution of all the aspartic acids with lysines resulted in enhanced hemolytic activity in all the analogs. However, when both proline and aspartic acid to lysine changes were made, only antibacterial activity was observed in the shorter peptides. Our investigations on delta-lysin and its analogs provide insights into the positioning of anionic, cationic residues and proline in determining hemolytic and antibacterial activities.  相似文献   

12.
Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance to the Cry3Aa toxin of B. thuringiensis subsp. tenebrionis. Histological examination revealed that the structural integrity of the midgut tissue in the toxin-resistant (R) insect was retained whereas the same tissue was devastated by toxin action in the susceptible (S) strain. Function-based activity profiling using zymographic gels showed specific proteolytic bands present in midgut extracts and brush border membrane vesicles (BBMV) of the R strain not apparent in the S strain. Aminopeptidase activity associated with insect midgut was higher in the R strain than in the S strain. Enzymatic processing of toxin did not differ in either strain and, apparently, is not a factor in resistance. BBMV from the R strain bound approximately 60% less toxin than BBMV from the S strain, whereas the kinetics of toxin saturation of BBMV was 30 times less in the R strain than in the S strain. However, homologous competition inhibition binding of (125)I-Cry3Aa to BBMV did not reveal any differences in binding affinity (K(d) approximately 0.1 microM) between the S and R strains. The results indicate that resistance by the CPB to the Cry3Aa toxin correlates with specific alterations in protease activity in the midgut as well as with decreased toxin binding. We believe that these features reflect adaptive responses that render the insect refractory to toxin action, making this insect an ideal model to study host innate responses and adaptive changes brought on by bacterial toxin interaction.  相似文献   

13.
A rapid, colourimetric assay for cytotoxin activity in Campylobacter jejuni   总被引:1,自引:0,他引:1  
Abstract Cell extracts and culture supernates of Campylobacter jejuni NCTC 11168 and three isolates from faecal samples from patients with enteritis were tested for cytotoxic activity on HeLa and Vero cells using a sensitive and rapid dye reduction assay which represents a simple assay for cytotoxin activity that can be assessed visually or spectrophotometrically in the wells of microplates. The assay was as sensitive as trypan blue exclusion and did not require the use of radioisotopes. A low level of cytotoxin activity, compared to that produced by a control verotoxin 2-producing Escherichia coli strain, was detected in cell extracts of all four strains, but no activity was detected in culture supernates. Production of an enterotoxin was evaluated by reverse passive latex agglutination with anti-cholera toxin antibody, a procedure which also represents a rapid and simple assay for this toxin. No enterotoxin activity was detected in cell extracts or culture supernates from any of the isolates.  相似文献   

14.
Pacheco S  Gómez I  Gill SS  Bravo A  Soberón M 《Peptides》2009,30(3):583-588
Cry1A toxins produced by Bacillus thuringiensis bind a cadherin receptor that mediates toxicity in different lepidopteran insect larvae. Insect cadherin receptors are modular proteins composed of three domains, the ectodomain formed by 9-12 cadherin repeats (CR), the transmembrane domain and the intracellular domain. Cry1A toxins interact with three regions of the Manduca sexta cadherin receptor that are located in CR7, CR11 and CR12 cadherin repeats. Binding of Cry1A toxin to cadherin induces oligomerization of the toxin, which is essential for membrane insertion. Also, it has been reported that cadherin fragments containing the CR12 region enhanced the insecticidal activity of Cry1Ab toxin to M. sexta and other lepidopteran larvae. Here we report that cadherin fragments corresponding to CR7 and CR11 regions also enhanced the activity of Cry1Ac and Cry1Ab toxin to M. sexta larvae, although not as efficient as the CR12 fragment. A single point mutation in the CR12 region (I1422R) affected Cry1Ac and Cry1Ab binding to the cadherin fragments and did not enhance the activity of Cry1Ab or Cry1Ac toxin in bioassays. Analysis of Cry1Ab in vitro oligomer formation in the presence of wild type and mutated cadherin fragments showed a correlation between enhancement of Cry1A toxin activity in bioassays and in vitro Cry1Ab-oligomer formation. Our data shows that formation of Cry1A toxin oligomer is in part responsible for the enhancement of Cry1A toxicity by cadherin fragments that is observed in vivo.  相似文献   

15.
Insulin stimulates a novel GTPase activity in human platelets   总被引:3,自引:0,他引:3  
Insulin stimulated the activity of a high-affinity GTPase activity in human platelet membranes some 62% over that of the basal activity. Half-maximal stimulation (Ka) was achieved with 3.1 nM insulin. The Km for GTP of the insulin-stimulated GTPase was 0.6 microM GTP. Treatment of isolated platelet membranes with cholera toxin, but not pertussis toxin, blocked insulin's ability to stimulate GTPase activity. Cholera toxin acted as a more potent inhibitor of the insulin-stimulated GTPase activity than that of the GTPase activity of the stimulatory guanine nucleotide regulatory protein, Gs, as monitored by stimulation using prostaglandin E1 (PGE1). Mixed ligand experiments showed that insulin stimulated GTPase activity in an additive fashion to GTPase activity stimulated by PGE1, due to Gs; by adrenaline (+ propranolol), due to the inhibitory guanine nucleotide regulatory protein, G1 and by vasopressin, which stimulates the putative 'Gp', a G-protein suggested to control the stimulation of inositol phospholipid metabolism. Insulin thus appears to stimulate a novel high-affinity GTPase activity in human platelet membranes. This may reflect the functioning of the putative Gins, a guanine nucleotide regulatory protein which has been suggested to mediate certain of insulin's actions on target tissues.  相似文献   

16.
The regulation of adenylate cyclase has been analyzed in normal rat thyroid cells as well as in the same cells transformed by the v-ras-k oncogene. In both cell types the adenylate cyclase complex consists of the two GTP-binding proteins, Gi and Gs, as demonstrated by the specific ADP-ribosylation induced by pertussis and cholera toxin, respectively. The response of adenylate cyclase of the transformed cells to forskolin, pertussis toxin and cholera toxin is attenuated with respect to the control cell line. The thyrotropic hormone (TSH), that acts on normal thyroid cells in culture as a growth factor by stimulating the adenylate cyclase activity, is not able to induce DNA synthesis nor does it stimulate adenylate cyclase in v-ras-k transformed cells.  相似文献   

17.
Abstract The hemagglutinating activity and carbohydrate specificity of cholera toxin (cholera enterotoxin) was studied using hemagglutination and hemagglutination inhibition. Hemagglutination was obtained with cholera toxin at >108 μg/ml for human types A, B, and O erythrocytes, >216 μg/ml for chicken erythrocytes, and >865 μg/ml for sheep erythrocytes. When the erythrocytes were treated with either neuraminidase or pronase, the hemagglutinating activity of cholera toxin was enhanced about 8- to 32-fold. Hemagglutination of pronase-treated human type B erythrocytes induced by cholera toxin was inhibited by lactose, galactose, melibiose and l -arabinose. Lactose was the most effective of the mono-, di-, and polysaccharides used as inhibitors, being a slightly better inhibitor than galactose, and much more potent than melibiose. These results suggest that cholera toxin is a bacterial lectin specific for galactose and/or lactose.  相似文献   

18.
The polypeptide hormone insulin and the binding unit of cholera toxin (CTB) were coupled via a disulfide bond. This hybrid molecule had 1/30 the ability of native insulin to bind to the insulin receptor and 1/30 the biological activity of native insulin in H35 rat hepatoma cells and rat adipocytes. Thus, in these two cell types that are very sensitive to insulin, the biological activity of the hybrid molecule was as predicted on the basis of the ability of the molecule to interact with the insulin receptor. In contrast, in HTC rat hepatoma cells and rat thymocytes, two poorly responsive cell types, the insulin-CTB conjugate had 1/3 the biological activity of native insulin, a value 10 times greater than its insulin receptor binding potency. This increased activity of the conjugate did not appear to be due to cholera toxin in the preparation, since a control of uncoupled CTB had no biological activity. Furthermore, native cholera toxin increased intracellular levels of cAMP by 20-fold, whereas the conjugate had no effect on cAMP levels. The CTB moiety did, however, contribute to the biological activity of the conjugate, since the activity of the hybrid molecule, like cholera toxin, was inhibited by gangliosides, whereas the activity of native insulin was not. Finally, the binding to thymocytes of insulin-CTB conjugate, but not insulin, was inhibited by gangliosides. Thus, a hybrid hormone molecule has been constructed which has insulin-like biological activity with the receptor specificity of cholera toxin in poorly responsive cells.  相似文献   

19.
The adenylate cyclase toxin (CyaA) of Bordetella pertussis is a 1706-residue protein composed of an amino-terminal adenylate cyclase (AC) domain linked to a 1300-residue channel-forming RTX ( r epeats in t o x in) haemolysin. The toxin delivers its AC domain into a variety of eukaryotic cells and impairs cellular functions by catalysing unregulated synthesis of cAMP from intracellular ATP. We have examined toxin activities of a set of deletion derivatives of CyaA. The results indicate that CyaA does not have a dedicated target cell-binding domain and that structural integrity and co-operation of all domains, as well as the post-translational fatty acylation mediated by an accessory protein CyaC, are all essential for target cell association and toxin activity of CyaA. When tested individually, all toxin derivatives were inactive and impaired in the tight association with the target cell surface. However, pairs of constructs with non-overlapping deletions complemented each other in vitro and exhibited a partially restored cytotoxic activity. This suggests that at least a part of the active toxin may act in the form of dimers or higher oligomers. The complementation analysis revealed that the last 217 residues of CyaA, containing the unprocessed secretion signal, form an autonomous domain essential for toxin activity, and that the region from residue 624 to 780 may be directly involved in delivery of the AC toxin into cells.  相似文献   

20.
Chemical modification of amino groups in the molecule of islet-activating protein (IAP), pertussis toxin, resulted in differential modification of biological activities of the toxin estimated in vivo with rats. Acetamidination of ε-amino groups of 50% (or more) of lysine residues in the IAP molecule totally abolished the lymphocytosis-promoting activity, but exerted no effects on the epinephrine-hyperglycemia inhibitory activity, of the toxin. Both activities were abolished by acylation of 50% or more of the amino groups probably due to the destruction of the toxin's quarternary structure. In contrast, the subunit assembly of IAP was maintained after exhaustive acetamidination of its lysine residues. The ADP-ribosyltranferase (or NAD-glycohydrolase) activity of the A-protomer (the biggest subunit) of IAP, which is responsible for the principal action of the toxin, enhancing insulin secretory responses and thereby inhibiting epinephrine hyperglycemia, was not affected by acetamidination of lysine residues. Thus, the A-protomer moiety of IAP is not directly involved in, but the amino groups of lysine residues in other subunits are selectively essential for, the development of the toxin-induced lymphocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号