首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.  相似文献   

2.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

3.
Hydraulic conductance of leaves (K(leaf)) typically decreases with increasing water stress and recent studies have proposed different mechanisms responsible for decreasing K(leaf) . We measured K(leaf) concurrently with ultrasonic acoustic emissions (UAEs) in dehydrating leaves of several species to determine whether declining K(leaf) was associated with xylem embolism. In addition, we performed experiments in which the surface tension of water in the leaf xylem was reduced by using a surfactant solution. Finally, we compared the hydraulic vulnerability of entire leaves with the leaf lamina in three species. Leaf hydraulic vulnerability based on rehydration kinetics and UAE was very similar, except in Quercus garryana. However, water potentials corresponding to the initial decline in K(leaf) and the onset of UAE in Q. garryana were similar. In all species tested, reducing the surface tension of water caused K(leaf) to decline at less negative water potentials compared with leaves supplied with water. Microscopy revealed that as the fraction of embolized xylem increased, K(leaf) declined sharply in Q. garryana. Measurements on leaf discs revealed that reductions in lamina hydraulic conductance with dehydration were not as great as those observed in intact leaves, suggesting that embolism was the primary mechanism for reductions in K(leaf) during dehydration.  相似文献   

4.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   

5.
In prior studies we learned that colonization of soil can be as important as colonization of roots in determining mycorrhizal influence on the water relations of host plants. Here we use a path analysis modeling approach to test (a) whether quantity of hyphae in soil contributes to variations in stomatal behavior and soil drying, and (b) whether soil colonization or root colonization has a stronger influence on these stomatal and soil drying responses. Experiments were performed on Sorghum bicolor and Cucurbita pepo, with soils and roots colonized by a mixture of Glomus intraradices and Gigaspora margarita. Soil colonization generally made more significant contributions to stomatal conductance than did root colonization. Soil colonization did not make significant direct contributions to soil water potential measures (soil water potential at stomatal closure or soil drying rate), whereas root colonization did contribute a potentially important path to each. The findings further support a role for mycorrhization of the soil itself in contributing to the regulation of stomatal behavior of host plants.  相似文献   

6.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

7.
Water relations, xylem embolism, root and shoot hydraulic conductance of both young plants in the field and potted seedlings of Quercus pubescens have been studied with the aim of investigating whether these variables may account for the well known adaptation of this oak species to arid habitats. Our data revealed that Q. pubescens is able to maintain high leaf relative water contents under water stress conditions. In fact, relative water contents measured in summer (July) did not differ from those recorded in April. This was apparently achieved by compensating water loss by an equal amount of water uptake. Such a drought avoidance strategy was made possible by the recorded high hydraulic efficiency of stems and roots under water stress. In fact, root hydraulic conductance of field-grown plants was maintained high in summer when the percentage loss of hydraulic conductance of stems was lowest. The hydraulic architecture of young plants of Q. pubescens measured in terms of partitioning of hydraulic resistances along the water pathway revealed that the highest hydraulic resistance was located in stems of the current year's growth. This hydraulic architecture is interpreted as consistent with the adaptation of Q. pubescens to arid habitats as a consequence of the recorded seasonal changes in water relation parameters as well as in root and stem hydraulics.  相似文献   

8.
Hydraulic conductance of leaves ( K leaf) typically decreases with increasing water stress. However, the extent to which the decrease in K leaf is due to xylem cavitation, conduit deformation or changes in the extra-xylary pathway is unclear. We measured K leaf concurrently with ultrasonic acoustic emission (UAE) in dehydrating leaves of two vessel-bearing and two tracheid-bearing species to determine whether declining K leaf was associated with an accumulation of cavitation events. In addition, images of leaf internal structure were captured using cryo-scanning electron microscopy, which allowed detection of empty versus full and also deformed conduits. Overall, K leaf decreased as leaf water potentials ( Ψ L) became more negative. Values of K leaf corresponding to bulk leaf turgor loss points ranged from 13 to 45% of their maximum. Additionally, Ψ L corresponding to a 50% loss in conductivity and 50% accumulated UAE ranged from −1.5 to −2.4 MPa and from −1.1 to −2.8 MPa, respectively, across species. Decreases in K leaf were closely associated with accumulated UAE and the percentage of empty conduits. The mean amplitude of UAEs was tightly correlated with mean conduit diameter ( R 2 = 0.94, P  = 0.018). These results suggest that water stress-induced decreases in K leaf in these species are directly related to xylem embolism.  相似文献   

9.
Imad N. Saab  Robert E. Sharp 《Planta》1989,179(4):466-474
Conditions of soil drying and plant growth that lead to non-hydraulic inhibition of leaf elongation and stomatal conductance in maize (Zea mays L.) were investigated using plants grown with their root systems divided between two containers. The soil in one container was allowed to dry while the other container was kept well-watered. Soil drying resulted in a maximum 35% inhibition of leaf elongation rate which occurred during the light hours, with no measurable decline in leaf water potential (w). Leaf area was 15% less than in control plants after 18 d of soil drying. The inhibition of elongation was observed only when the soil w declined to below that of the leaves and, thus, the drying soil no longer contributed to transpiration. However, midday root w in the dry container (-0.29 MPa) remained much higher than that of the surrounding soil (-1.0 MPa) after 15 d of drying, indicating that the roots in drying soil were rehydrated in the dark.To prove that the inhibition of leaf elongation was not caused by undetectable changes in leaf water status as a result of loss of half the watergathering capacity, one-half of the root system of control plants was excised. This treatment had no effect on leaf elongation or stomatal conductance. The inhibition of leaf elongation was also not explained by reductions in nutrient supply.Soil drying had no effect on stomatal conductance despite variations in the rate or extent of soild drying, light, humidity or nutrition. The results indicate that non-hydraulic inhibition of leaf elongation may act to conserve water as the soil dries before the occurrence of shoot water deficits.Symbol w water potential Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 10881  相似文献   

10.
Vulnerability of xylem conduits to cavitation and embolism was compared in two species of Rhizophoraceae, the mangrove Rhizophora mangle L. and the tropical moist-forest Cassipourea elliptica (Sw.) Poir. Cavitation (water column breakage preceeding embolism) was monitored by ultrasonic detection; embolism was quantified by its reduction of xylem hydraulic conductivity. Acoustic data were not predictive of loss in hydraulic conductivity, probably because signals from cavitating vessels were swamped by more numerous ones from cavitating fibers. Rhizophora mangle was the less vulnerable to embolism of the two species, losing 80% of its hydraulic conductivity between – 6.0 and – 7.0 MPa. Cassipourea elliptica lost conductivity in linear proportion to decreasing xylem pressure from – 0.5 to – 7.0 MPa. Species vulnerability correlated closely with physiological demands of habitat; the mangrove Rhizophora mangle had field xylem pressures between – 2.5 and – 4.0 MPa. whereas the minimum for Cassipourea elliptica was – 1.6 MPa. Differences in vulnerability between species could be accounted for by differences in the measured air permeability of intervessel pit membranes. According to this explanation, embolism occurs when air enters a water-filled vessel from a neighboring air-filled one via pores in shared pit membranes.  相似文献   

11.
Nardini  A.  Salleo  S.  Lo Gullo  M.A.  Pitt  F. 《Plant Ecology》2000,148(2):139-147
The vulnerability to drought and freeze stress was measured in young plants of Quercus ilex L. growing in the field in two natural sites within the Italian distribution area of this species, i.e. Sicily (Southern Mediterranean Basin) and Venezia Giulia (Northeastern Italy), respectively. In particular, the resistance strategies adopted by Q. ilex to withstand the two stresses were estimated in terms of seasonal and/or diurnal changes in leaf conductance to water vapour (gL), water potential (L) and relative water content (RWC) as well as of xylem embolism in the stem and root hydraulic conductance (KRL). Sicilian (SI) plants showed to reduce water loss by stomatal closure (gL decreased) in summer, thus maintaining average RWCs at 88–90%. Moreover, SI plants showed considerable resistance to xylem cavitation in the stem (the loss of hydraulic conductance, PLC, was less than 12% throughout the year) and to maintain the hydraulic conductance of their roots (KRL), constantly high even in summer. Plants growing in Venezia Giulia (VG plants), on the contrary, underwent leaf dehydration in the winter due to freeze stress so that RWC measured in April was still 78% on a diurnal basis. This was apparently due to consistent xylem embolism in the stem. In fact, PLC was as high as 40% between November and March. Only in the summer was PLC similar to that recorded in SI plants. Moreover, KRL of VG plants decreased in November from about 1.5 to 0.8×10–4 kg s–1 m–2 MPa–1, i.e. about 50%, and in February KRL dropped further to 0.4×10–4 kg s–1 m–2 MPa–1. On the basis of the above, we conclude that: (a) Q. ilex was more sensitive to freeze than to drought stress so that freeze stress can be considered as a factor limiting the distribution area of this species; (b) drought and freeze stress were faced by Q. ilex adopting two different resistance strategies, i.e. drought avoidance based on water saving in Sicily and freeze tolerance in Venezia Giulia.  相似文献   

12.
Abstract Concurrent estimates of stem density, leaf and stem water potential, stomatal conductance and ultrasonic acoustic emissions (cavitations) in an excised sapling of Thuja occidentalis L. were made. As the sapling dehydrated in air, the decline in leaf water potential to about - 2.0 MPa was followed by apparent rehydration of the foliage while the stem showed no sign of rehydration. The rate of acoustic emissions peaked prior to the onset of rehydration which coincided with virtual stomatal closure. There was a significant decline in stem density until maximum foliage rehydration level was reached. From this point, leaf water potential, stem water potential and stem density continued a relatively slow decline while acoustic emission rate and stomatal conductance remained low. Removal of the bark and majority of foliage from the sapling resulted in increased cavitation and more rapid deelines in leaf and stem water potential and stem density.  相似文献   

13.
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.  相似文献   

14.
M. A. Sobrado 《Oecologia》1993,96(1):19-23
Drought-deciduous and evergreen species coexist in tropical dry forests. Drought-deciduous species must cope with greater seasonal leaf water-potential fluctuations than evergreen species and this may increase their susceptibility to drought-induced xylem embolism. The relationship between water transport efficiency and leaf life-span were determined for both groups. They differed in seasonal changes of both, wood water content (W c) and wood specific gravity (G). During the dry season, the W c in drought-deciduous species declined and the minimum value was recorded when leaf fall was complete. At this time, the volumetric fraction of gas (V g) increased indicating air entry into xylem vessels. In contrast, W c, G and V g changed only slightly throughout the year for evergreen species. Maximum hydraulic conductivity of drought-deciduous species was 2–6 times that of the evergreen species. but was severely reduced at leaf fall. In the evergreen species, similar water conductivities were measured during wet and dry seasons. The trade-off between xylem water transport capacity and leaf lifespan found in species coexisting in this forest reveals the existence of contrasting but successful adaptations to this environment. Drought-deciduous species maximize production in the short term with higher water transport efficiency which leads to the seasonal occurrence of embolisms. Conversely, the behaviour of evergreen species with reduced maximum efficiency is conservative but safe in relation to xylem embolism.  相似文献   

15.
In a previous study on the effects of N-supply on leaf cell elongation, the spatial distribution of relative cell elongation rates (RCER), epidermal cell turgor, osmotic pressure (OP) and water potential (Ψ) along the elongation zone of the third leaf of barley was determined (W. Fricke et al. 1997, Planta 202: 522–530). The results suggested that in plants receiving N at fixed relative addition rates (N-supply limitation of growth), cell elongation was rate-limited by the rate of solute provision, whereas in plants growing on complete nutrient solution containing excessive amounts of N (N-demand limitation), cell elongation was rate-limited by the rate of water supply or wall yielding. In the present paper, these suggestions were tested further. The generation rates of cell OP, turgor and Ψ along the elongation zone were calculated by applying the continuity equation of fluid dynamics to the previous data. To allow a more conclusive interpretation of results, anatomical data were collected and bulk solute concentrations determined. The rate of OP generation generally exceeded the rate of turgor generation. As a result, negative values of cell Ψ were created, particularly in demand-limited plants. These plants showed highest RCER along the elongation zone and a Ψ gradient of at least −0.15 MPa between water source (xylem) and expanding epidermal cells. The latter was similar to a theoretically predicted value (−0.18 MPa). Highest rates of OP generation were observed in demand-limited plants, with a maximum rate of 0.112 MPa · h−1 at 16–20 mm from the leaf base. This was almost twice the rate in N-supply-limited plants and implied that the cells in the leaf elongation zone were capable of importing (or synthesising) every minute almost 1 mM of osmolytes. Potassium, Cl and NO3 were the main inorganic osmolytes (only determined for demand-limited plants). Their concentrations suggest that, unlike the situation in fully expanded epidermal cells, sugars are used to generate OP and turgor. Anatomical data revealed that the zone of lateral cell expansion extended distally beyond the zone of cell elongation. It is concluded that leaf cell expansion in barley relies on high rates of water and solute supply, rates that may not be sustainable during periods of sufficient N-supply (limitation by water supply: Ψ gradients) or limiting N-supply (limitation by solute provision: reduced OP-generation rates). To minimise the possibility of growth limitation by water and osmolyte provision, longitudinal and lateral cell expansion peak at different locations along the growth zone. Received: 15 October 1997 / Accepted: 12 March 1998  相似文献   

16.
This study assessed the variation of leaf anatomy, chlorophyll content index (CCI), maximal stomatal conductance (g s max ) and leaf wettability within the canopy of an adult European beech tree (Fagus sylvatica L.) and for beech saplings placed along the vertical gradient in the canopy. At the top canopy level (CL28m) of the adult beech, CCI and leaf anatomy reflected higher light stress, while g s max increased with height, reflecting the importance of gas exchange in the upper canopy layer. Leaf wettability, measured as drop contact angle, decreased from 85.5°?±?1.6° (summer) to 57.5°?±?2.8° (autumn) at CL28m of the adult tree. At CL22m, adult beech leaves seemed to be better optimized for photosynthesis than the CL28m leaves because of a large leaf thickness with less protective and impregnated substances, and a higher CCI. The beech saplings, in contrast, did not adapt their stomatal characteristics and leaf anatomy according to the same strategy as the adult beech leaves. Consequently, care is needed when scaling up experimental results from seedlings to adult trees.  相似文献   

17.
This study quantified stomatal conductance in a CO2-fertilized warm-temperate forest. The study considered five items: (1) the characteristics of the diurnal and seasonal variation, (2) simultaneous measurements of canopy-scale fluxes of heat and CO2 and the normalized difference vegetation index (NDVI), (3) the stomatal conductance of sunlit and shaded leaves, (4) a stomatal conductance model, and (5) the effects of leaf age on stomatal conductance. Sampled plants included evergreen and deciduous species. Stomatal conductance, SPAD, and leaf nitrogen content were measured between March and December 2001. Sunlit leaves had the largest diurnal and seasonal variation in conductance in terms of both magnitude and variability. In contrast, shaded leaves had only low conductance and slight variation. Stomatal conductance increased sharply in new shooting leaves of Quercus serrata until reaching a maximum 2 months after full leaf expansion. The seasonal changes in the canopy-scale heat and CO2 fluxes were similar to the change in the canopy-scale NDVI of the upper-canopy plants. These seasonal changes were correlated with the leaf-level H2O/CO2 exchanges of upper-canopy plants, although these did not represent the stomatal conductance in fall completely. Seasonal variations in the leaf nitrogen content and SPAD were similar, except leaf foliation, until day 130 of the year, when the behaviors were completely the opposite. A Jarvis-type model was used to estimate the stomatal conductance. We modified it to include SPAD as a measure of leaf age. The seasonal variation in stomatal conductance was not as sensitive to SPAD, although estimates for evergreen species showed improvements.  相似文献   

18.
Summary Norway spruce, Picea abies (L.) Karst., was exposed to charcoal-filtered air (CF) and non-filtered air + ozone (NF+) and periods of soil moisture deficit from 1985 to 1988 in open-top chambers. Net photosynthesis, stomatal conductance, needle water potential and various shoot properties were measured on 1-year-old shoots during a period of soil moisture deficit. The gas exchange was measured at saturating photosynthetic photon flux density and across a range of CO2 concentrations. The soil moisture deficit induced a mild drought stress in the plants, expressed by a pre-dawn needle water potential of approximately-0.9 MPa and a substantial reduction in net photosynthesis and gas phase conductance. In the CF treatment, intercellular CO2 concentration was reduced, but was unaffected in the NF+ treatment. Furthermore, net photosynthesis declined more in response to the soil moisture deficit in the NF+ treatment than in the CF treatment. This is suggested to be attributed to the carboxylation efficiency at the operating point, which was decreased by 47% and 64% in shoots from the CF and the NF+ treatments, respectively. Stomatal limitation of net photosynthesis was increased by drought by 24–45% in the CF treatment, while it was unaffected in the NF+ treatment. Thus, our results imply that the coupling between the stomatal conductance and the photosynthetic rate was changed and that the marginal cost of water per given amount of carbon gain will increase in trees exposed to ozone, during periods of drought.  相似文献   

19.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

20.
Our objective is to describe a multi-layer model of C3-canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus-Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole-forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号