首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.  相似文献   

2.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

3.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

4.
The human alpha satellite repetitive DNA family is organized as distinct chromosome-specific subsets localized to the centromeric region of each chromosome. Here, we report he isolation and characterization of cloned repeat units which define a hierarchical subset of alpha satellite on human chromosome 1. This subset is characterized by a 1.9-kb higher-order repeat unit which consists of 11 tandem approximately 171-bp alpha satellite monomer repeat units. The higher-order repeat unit is itself tandemly repeated, present in at least 100 copies at the centromeric region of chromosome 1. Using pulsed-field gel electrophoresis we estimate the total array length of these tandem sequences at the centromere of chromosome 1 to be several hundred kilobase pairs. Under conditions of high stringency, the higher-order repeat probe hybridizes specifically to chromosome 1 and can be used to detect several associated restriction fragment length DNA polymorphisms. As such, this probe may be useful for molecular and genetic analyses of the centromeric region of human chromosome 1.  相似文献   

5.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

6.
Alpha satellite DNA, a diverse family of tandemly repeated DNA sequences located at the centromeric region of each human chromosome, is organized in a highly chromosome-specific manner and is characterized by a high frequency of restriction-fragment-length polymorphism. To examine events underlying the formation and spread of these polymorphisms within a tandem array, we have cloned and sequenced a representative copy of a polymorphic array from the X chromosome and compared this polymorphic copy with the predominant higher-order repeat form of X-linked alpha satellite. Sequence data indicate that the polymorphism arose by a single base mutation that created a new restriction site (for HindIII) in the sequence of the predominant repeat unit. This variant repeat unit, marked by the new HindIII site, was subsequently amplified in copy number to create a polymorphic domain consisting of approximately 500 copies of the variant repeat unit within the X-linked array of alpha satellite. We propose that a series of intrachromosomal recombination events between misaligned tandem arrays, involving multiple rounds of either unequal crossing-over or sequence conversion, facilitated the spread and fixation of this variant HindIII repeat unit.  相似文献   

7.
The human alpha satellite DNA family, like many highly repeated satellite DNAs in eukaryotic genomes, is organized in distinct chromosome-specific subsets. As part of investigations into the molecular and evolutionary basis for the chromosome-specific nature of such subsets, we report the isolation and characterization of alpha satellite sequences specific for human chromosome 3. This subset is characterized by a predominant tandemly arranged 2.9 kb higher-order repeat unit which, in turn, consists of 17 tandem diverged monomer repeat units of 171 bp. Nucleotide sequence analysis reveals that the chromosome 3 higher-order repeat units are comprised, at least in part, of diverged dimeric ( 340 bp) sub-repeats and that this divergence accounts for the chromosome-specific behavior of this subset. Pulsed-field gel electrophoresis demonstrates that the chromosome 3 higher-order repeat units are localized in large domains, at least 1000 kb in length. Familial restriction fragment length polymorphisms associated with the satellite subset can be detected by pulsed field gel electrophoresis and may facilitate molecular analysis of interchromosomal variation.  相似文献   

8.
Distinct subsets of the human alpha satellite repetitive DNA family can be found in the centromeric region of each chromosome. Here we described the isolation and mapping of an alpha satellite repeat unit specific for human chromosome 10, using a somatic cell hybrid in which the only human centromere derives from chromosome 10. A hierarchical higher-order repeat unit, consisting of eight tandem approximately 171-bp alphoid monomer units, is defined by six restriction endonucleases. Under high-stringency conditions, a cloned representative of this 8-mer repeat family hybridizes to chromosome 10 only, both by Southern blot analysis of a somatic cell hybrid panel and by in situ hybridization. The probe furthermore detects a polymorphic restriction pattern of the alpha satellite array on chromosome 10. These features will make this probe a valuable genetic marker for studies of the centromeric region of chromosome 10.  相似文献   

9.
Summary The centromeric regions of human chromosomes are characterized by diverged chromosome-specific subsets of a tandemly repeated DNA family, alpha satellite, which is based on a fundamental monomer repeat unit 171 bp in length. We have compared the nucleotide sequences of 44 alphoid monomers derived from cloned representatives of the multimeric higher-order repeat units of human chromosomes 1, 11, 17, and X. The 44 monomers exhibit an average 16% divergence from a consensus alphoid sequence, and can be assigned to five distinct homology groups based on patterns of sequence substitutions and gaps relative to the consensus. Approximately half of the overall sequence divergence can be accounted for by sequence changes specific to a particular homology group; the remaining divergence appears to be independent of the five groups and is randomly distributed, both within and between chromosomal subsets. The data are consistent with the proposal that the contemporary tandem arrays on chromosomes 1, 11, 17, and X derive from a common multimeric repeat, consisting of one monomer each from the five homology groups. The sequence comparisons suggest that this pentameric repeat must have spread to these four chromosomal locations many millions of years ago, since which time evolution of the four, now chromosome-specific, alpha satellite subsets has been essentially independent.  相似文献   

10.
The human alpha satellite DNA family is organized into chromosome-specific subsets characterized by distinct higher-order repeats based on a approximately 171 basepair monomer unit. On human chromosome 17, the predominant form of alpha satellite is a 16-monomer (16-mer) higher-order repeat present in 500-1000 copies per chromosome 17. In addition, less abundant 15-monomer and 14-monomer repeats are also found constitutively on chromosome 17. Polymorphisms in the form of different higher-order repeat lengths have been described for this subset, the most prominent polymorphism being a 13-monomer (13-mer) higher-order repeat present on approximately 35% of all chromosomes 17. To investigate the nature of this polymorphism, we have cloned, sequenced and compared the relevant regions of the 13-mer to the previously characterized 16-mer repeat. The results show that the repeats are virtually identical, with the principal difference being the exclusion of three monomers from the 13-mer repeat. We propose that the 13-mer is the product of an isolated homologous recombination event between two monomers of the 16-mer repeat. Sequence comparisons reveal the approximate site of recombination and flanking regions of homology. This recombination site corresponds to a position within the alphoid monomer which has been previously implicated in an independent homologous recombination event, suggesting that there may exist a preferred register for recombination in alphoid DNA. We suggest that these events are representative of an ongoing process capable of reorganizing the satellite subset of a given chromosome, thereby contributing to the establishment of chromosome-specific alpha satellite subsets.  相似文献   

11.
The alpha satellite DNA of Old World (catarhine) primates usually consists of similar, but not identical, ca. 170 bp sequences repeated tandemly hundreds to thousands of times. The 170 bp monomeric repeats are components of higher-order repeats, many of which are chromosome specific. Alpha satellites are found exclusively in centromeric regions where they appear to play a role in centromere function. We have found that alpha satellite DNA in neotropical (New World; platyrrhine) primates is very similar to its Old World counterpart: it consists of divergent ca. 170 bp subsequences that are arranged in tandem arrays with a ca. 340 bp periodicity. New and Old World alpha satellites share about 64% sequence identity overall, and contain several short sequence motifs that appear to be highly conserved. One exception to the tandemly arrayed 340 bp motif has been found: the major alpha satellite array in Chiropotes satanas (black bearded saki) has a 539 bp repeat unit that consists of a 338 bp dimer together with a duplication of 33 bp of the first monomeric unit and 168 bp of the second monomeric unit.  相似文献   

12.
A new key-string segmentation algorithm for identification of alpha satellite DNAs and higher-order repeat (HOR) units was introduced and exemplified. Starting with an initial key string, we determine the dominant key string and HOR. Our key-string algorithm was used to scan the recent GenBank data for human alpha satellite DNA sequence AC017075.8 (193 277 bp) from the centromeric region of chromosome 7. The sequence was computationally segmented into one HOR domain (super-repeat domain) and two non-HOR domains. Dominant key-string GTTTCT provided segmentation in terms of alpha monomers. The HOR is tandemly repeated in 54 copies in the super-repeat (HOR) domain. Five insertions and three deletions in the HOR structure associated with a dominant key string were identified. Concensus HOR was constructed. Divergence of individual HOR copies from concensus amounts to 0.7% on the average, while divergence between 16 monomer variants within each HOR is on the average 20%. In the front and back domain, 199 monomer variants were identified that are not organized in HOR and diverge by 20-40%.  相似文献   

13.
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.  相似文献   

14.
The structure of the alpha satellite DNA higher-order repeat (HOR) unit from a subset shared by human chromosomes 13 and 21 (D13Z1 and D21Z1) has been examined in detail. By using a panel of hybrids possessing either a chromosome 13 or a chromosome 21, different HOR unit genotypes on chromosomes 13 and 21 have been distinguished. We have also determined the basis for a variant HOR unit structure found on 8% of chromosomes 13 but not at all on chromosomes 21. Genomic restriction maps of the HOR units found on the two chromosome 13 genotypes and on the chromosome 21 genotype are constructed and compared. The nucleotide sequence of a predominant 1.9-kilobasepair HOR unit from the D13Z1/D21Z1 subset has been determined. The DNA sequences of different alpha satellite monomers comprising the HOR are compared, and the data are used to develop a model, based on unequal crossing-over, for the evolution of the current HOR unit found at the centromeres of both these chromosomes.Correspondence to: H.F. Willard  相似文献   

15.
Recent amplification of an alpha satellite DNA in humans.   总被引:10,自引:1,他引:9       下载免费PDF全文
A repeat sequence 682 base pairs (bp) long produced by cleavage of human DNA with Xba I restriction enzyme is composed of four tandemly arranged subunits with lengths of 171, 170, 171, and 170 bp each. The sequence organization of the 682 bp Xba I repeat bears a striking resemblance to other complex satellite DNAs of primates, including the Eco RI human alpha satellite family which also occurs as a 170 bp repeat. The Eco RI tetramer and the 682 bp Xba I repeat show a sequence divergence of 21%. The 682 bp Xba I repeat sequence is restricted to humans and is only distantly related to the previously reported 340 bp Xba human repeated DNA sequence. These finding are consistent with the concept of occasional amplifications of members or groups of members of alpha satellite DNA during human evolution. Amplifications apparently occurred after humans, apes and gibbons diverged from Old World monkeys (Eco RI satellite), after humans and apes diverged from gibbons (340 bp Xba I satellite) and after humans diverged from the great apes (682 bp Xba I satellite).  相似文献   

16.
To examine the molecular organization of DNA sequences located in the centromeric region of human chromosome 16 we have isolated and characterized a chromosome 16-specific member of the alpha satellite DNA family. The probe obtained is specific for the centromere of chromosome 16 by somatic cell hybrid analysis and by fluorescence in situ hybridization and allows detection of specific hybridizing domains in interphase nuclei. Nucleotide sequence analysis indicates that this class of chromosome 16 alpha satellite (D16Z2) is organized as a series of diverged 340-bp dimers arranged in a tandem array of 1.7-kb higher-order repeat units. As measured by pulsed-field gel electrophoresis, the total D16Z2 array spans approximately 1,400-2,000 kb of centromeric DNA. These sequences are highly polymorphic, both by conventional agarose-gel electrophoresis and by pulsed-field gel electrophoresis. Investigation of this family of alpha satellite should facilitate the further genomic, cytogenetic, and genetic analysis of chromosome 16.  相似文献   

17.
Tandemly repeated DNA families appear to undergo concerted evolution, such that repeat units within a species have a higher degree of sequence similarity than repeat units from even closely related species. While intraspecies homogenization of repeat units can be explained satisfactorily by repeated rounds of genetic exchange processes such as unequal crossing over and/or gene conversion, the parameters controlling these processes remain largely unknown. Alpha satellite DNA is a noncoding tandemly repeated DNA family found at the centromeres of all human and primate chromosomes. We have used sequence analysis to investigate the molecular basis of 13 variant alpha satellite repeat units, allowing comparison of multiple independent recombination events in closely related DNA sequences. The distribution of these events within the 171-bp monomer is nonrandom and clusters in a distinct 20- to 25-bp region, suggesting possible effects of primary sequence and/or chromatin structure. The position of these recombination events may be associated with the location within the higher-order repeat unit of the binding site for the centromere-specific protein CENP-B. These studies have implications for the molecular nature of genetic recombination, mechanisms of concerted evolution, and higher-order structure of centromeric heterochromatin.  相似文献   

18.
S J Durfy  H F Willard 《Genomics》1989,5(4):810-821
A number of processes, such as sequence conversion, unequal crossingover, and molecular drive, have been postulated to explain the homogenization of tandemly repeated DNA families. To investigate the nature and extent of such processes in the alpha satellite family of centromeric DNA, we determined the nucleotide sequence of approximately 700 bp from each of 40 representative alpha satellite repeats from six sources of human X chromosomes, obtaining a total of approximately 28 kb of sequence data. Sequence divergence among the repeats examined was low, with an average pairwise difference of approximately 1%. Pairwise comparisons of all repeats indicate that the degree of similarity for those repeats in physical proximity (within approximately 15 kb) of each other is significantly greater than that for randomly located repeats, from either the same or different X chromosomes, suggesting that the mechanisms predicted to homogenize these arrays are effectively short-range in action. Analysis of individual patterns of sequence variation allows the assignment of haplotypes for five high-copy-number diagnostic positions and reveals distinct positions of equilibrium and disequilibrium within the repeat. These analyses address hypotheses about the origin of the observed patterns of variation throughout alpha satellite evolution.  相似文献   

19.
A restriction enzyme analysis of the satellite II DNAs of the domestic goat Capra hircus, sheep Ovis aries and ox Bos taurus (p = 1.720, 1.723 and 1.722 g/cm3, respectively) has been carried out and shows that, although all three are composed of repeat units of 700 base-pairs, goat satellite II is present in the genome primarily in the form of 2100 base-pair trimers. Unequal crossing-over between repeat units has produced an oligomer series, whose oligomers gradually decrease in copy number the further they are in molecular weight from the trimer. The trimer population is much more uniform than the monomer population, as most trimers have similar restriction patterns, whereas their component monomers differ considerably in their restriction properties. This heterogeneity was confirmed by cross-hybridization of the different monomers of a cloned trimer. Here, heterologous hybrids were much less stable than the homologous hybrids. Attempts were made to simulate such an oligomer series by computer, using a longitudinal (saltatory), and two horizontal (unequal crossover and drive) models. Simulations of both the saltatory and drive mechanisms could produce the oligomer series in approximately the observed ratios, but only the former could simultaneously produce other restriction properties of this sequence family. This was because the other restriction sites were in a different (monomer) register, and it is difficult for a drive model promoting traits in only one register to fix properties in different registers. The unequal crossover model proposed by Smith (1973, 1976) generally produced homogeneous arrays from heterogeneous arrays, but higher-order repeat structures could be produced when the efficiency of crossing-over between different monomer types was reduced. In most of these arrays, the dimer was the predominant oligomer, but in approximately 10% the trimer was predominant. Since the unequal crossover model produces dimeric arrays with high frequency given appropriate conditions, it is an attractive model for explaining the production of satellite DNAs whose structure has evolved through a series of doublings, such as mouse major satellite DNA and the "alphoid" satellite sequences of primates. Other factors necessary for this model to work are generally considered to be natural components of the speciation process. It is therefore suggested that, although the saltatory model conforms most closely to the observed structure of goat satellite II, this particular satellite DNA may represent one of the few cases when the unequal crossover mechanism does not give rise to a dimeric structure.  相似文献   

20.
Tandemly repeated DNA can comprise several percent of total genomic DNA in complex organisms and, in some instances, may play a role in chromosome structure or function. Alpha satellite DNA is the major family of tandemly repeated DNA found at the centromeres of all human and primate chromosomes. Each centromere is characterized by a large contiguous array of up to several thousand kb which can contain several thousand highly homogeneous repeat units. By using a novel application of the polymerase chain reaction (repPCR), we are able to amplify a representative sampling of multiple repetitive units simultaneously, allowing rapid analysis of chromosomal subsets. Direct sequence analysis of repPCR amplified alpha satellite from chromosomes 17 and X reveals positions of sequence heterogeneity as two bands at a single nucleotide position on a sequencing ladder. The use of TdT in the sequencing reactions greatly reduces the background associated with polymerase pauses and stops, allowing visualization of heterogeneous bases found in as little as 10% of the repeat units. Confirmation of these heterogeneous positions was obtained by comparison to the sequence of multiple individual cloned copies obtained both by PCR and non-PCR based methods. PCR amplification of alpha satellite can also reveal multiple repeat units which differ in size. Analysis of repPCR products from chromosome 17 and X allows rapid determination of the molecular basis of these repeat unit length variants, which appear to be a result of unequal crossing-over. The application of repPCR to the study of tandemly repeated DNA should allow in-depth analysis of intra- and interchromosomal variation and unequal crossing-over, thus providing insight into the biology and genetics of these large families of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号