首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Delayed-type hypersensitivity (DTH) against alloantigens can be induced by sc immunization with allogeneic cells. The induction of DTH can be suppressed by iv preimmunization of the mice with similar allogeneic spleen cells, provided the cells are irradiated before injection. This suppression is mediated by T cells. The suppressor activity can be induced not only by H-2-and non-H-2-coded antigens, but also by H-2 subregion-coded antigens. Suppression induced by K, I, or D subregion-coded antigens is specific for that particular subregion as well as for its haplotype. I-J-coded alloantigens were found to not be necessary for the induction of antigen-specific suppressor T cells. After restimulation of suppressor T cells by the "specific" alloantigens, the DTH to simultaneously administered third-party alloantigens becomes suppressed as well. This nonspecific suppression of DTH to third party "bystander" alloantigens also occurs when the specific and the third-party antigens are presented on separate cells, provided that both cell types are administered together at the same site. The simultaneous presentation of both sets of alloantigens during the induction phase of DTH only is sufficient to prevent the normal development of DTH to the third-party antigens.  相似文献   

2.
Suppressor T (Ts) cells that can suppress delayed type hypersensitivity (DTH) against histocompatibility (H) antigens can be isolated from spleen and lymph nodes a few days after i.v. immunization of mice with irradiated allogeneic spleen cells. In this paper we investigated the suppression of the efferent phase of DTH to characterize the Ts cells involved, and to compare them with the afferent phase Ts cells that have been characterized in a previous paper of this series. The DTH against third party alloantigens that were not used for the i.v. suppressive immunization could be suppressed by presenting the third party alloantigens together with the original alloantigens in the challenge inoculum for eliciting the DTH reaction. Thus the ultimate suppressive effect by the Ts cells that are active during the efferent phase of DTH is nonspecific. This non-specific suppression of DTH to alloantigens has previously been found for the afferent phase Ts cells as well. For suppression of the efferent phase of DTH to alloantigens, a population of Lyt-1+2+ Ts cells appeared to be essential, just like in the suppression of the afferent phase of DTH to alloantigens. We did not find evidence for the involvement of cyclophosphamide-sensitive auxiliary Ts cells in suppression of the efferent phase of DTH. Also no evidence was found for H-2 or Igh-restricted activation and function of the Ts cells that were active during afferent and efferent phases of the DTH response to H antigens. In view of these similarities between afferent phase and efferent phase Ts cells we conclude that there are no arguments as yet to suppose that there is more than one type of T cells involved in the suppression of the afferent and efferent limb of DTH against H antigens.  相似文献   

3.
The present study investigates the effect of portal venous (p.v.) administration of allogeneic cells on the capacity of delayed-type-hypersensitivity (DTH) reactivity to alloantigens. BALB/c mice were inoculated with C3H/He spleen cells via intravenous (i.v.) or p.v. route. Intravenous injection of C3H/He spleen cells into BALB/c mice resulted in appreciable DTH responses to C3H/He alloantigens. In contrast, p.v. inoculation of the same number of C3H/He cells not only failed to induce any significant anti-C3H/He DTH responses but also abolished the capability of the animals to develop DTH responses as induced by subcutaneous (s.c.) immunization with C3H/He spleen cells. Such suppression was alloantigen-specific, since p.v. inoculation of C3H/He spleen cells resulted in selective inhibition of anti-C3H/He DTH potential without suppressing DTH responses to C57BL/6 alloantigens. This tolerance was rapidly inducible and long-lasting. When spleen cells from tolerant mice were transferred i.v. into 600 R X-irradiated syngeneic recipient mice alone or together with normal BALB/c spleen cells, these tolerant spleen cells themselves failed to induce DTH responses but did not exhibit any suppressive effect on the generation of DTH responses induced by normal spleen cells co-transferred. These results indicate that tolerance was not necessarily associated with the induction of suppressor cell activity but rather was associated with the elimination or functional impairment of clones specific for alloantigens. The results are discussed in the context of a) the role of the liver in immune responses, b) cellular mechanisms underlying the tolerance induction, and c) potential application of this approach to the future transplantation immunology.  相似文献   

4.
Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, and their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.  相似文献   

5.
Subcutaneous (sc) immunization of mice with allogeneic spleen cells can induce delayed-type hypersensitivity (DTH) to histocompatibility antigens. Intravenous immunization with irradiated allogeneic spleen cells, on the other hand, induces suppressor T (Ts) lymphocytes. These Ts cells are capable of suppressing the host-versus-graft (HvG) DTH reactivity which normally arises after sc immunization. Moreover they can suppress the development of antihost DTH effector T cells during graft-versus-host (GvH) reactions. These models for HvG and GvH DTH reactivity were used to study the influence of 2'-deoxyguanosine (dGuo) on the induction, further development, and expression of Ts cells in vivo. It was found that administration of dGuo inhibits the proliferation-dependent induction and further development of Ts cells, but not the suppression mediated by already activated Ts cells.  相似文献   

6.
Earlier studies have demonstrated that T cells activated in mixed lymphocyte reactions can exert positive as well as negative allogeneic effects on B cells expressing the appropriate alloantigens on their surface. We investigated the effect of in vivo priming of T cells with alloantigens on their capacity to help or suppress allogeneic B cell cultures against sheep erythrocytes. We used immunization protocols that have been shown to be optimal for induction of alloantigen-specific delayed-type hypersensitivity (DTH) and alloantigen-specific suppressor T (Ts) cells for DTH. The results show that in vivo stimulation with alloantigens, depending on the immunization route and the lymphoid organ studied, can be as effective as in vitro stimulation in increasing the frequency of alloantigen-specific helper T (Th) cells and Ts cells. Subcutaneous immunization induced a 10-fold frequency raise of Th cells as well as of Ts cells in the lymph nodes. In the spleen the Th cell population was hardly affected by s.c. immunization, whereas the Ts cell population increased by at least a factor 20. Intravenous immunization, on the other hand, selectively expanded the Th cell population in the spleen, whereas the splenic Ts cell population and the Th and Ts cells in the lymph nodes were not affected. Comparison of these results with our previous data concerning characteristics and the requirements of in vivo activation of alloantigen-specific DTH reactive T cells and of alloantigen-specific Ts cells suggest that different Ts cell populations are involved in suppression of alloantigen-specific DTH in vivo and of allogeneic suppression of in vitro induced sheep erythrocytes specific antibody formation.  相似文献   

7.
Delayed-type hypersensitivity (DTH) response in mice induced by sc injection of alum-absorbed ovalbumin (OA) was accelerated and enhanced by priming sc with a low dose of urea-denatured ovalbumin (UD-OA), 2 or more days earlier, whereas it was suppressed by priming sc with a high dose of UD-OA, 0 or more days earlier. The ability in primed mice to accelerate or suppress the DTH response could be transferred antigen specifically into cyclophosphamide (CY)-pretreated recipients or normal recipients by spleen cells from primed mice, but not by the T-cell-depleted spleen cells. Furthermore, the ability of spleen cells to transfer the acceleration or the suppression appeared transiently around 7 or 4 days after priming, although the acceleration or the suppression in donor mice persisted for a much longer time. Pretreatment with CY abolished the suppression of DTH response in high dose-primed mice and resulted in the acceleration of DTH response. These results suggest that the activity of DTH-related memory T cells which accelerate and enhance the response can be inhibited by suppressor T cells for the DTH response.  相似文献   

8.
BALB/c or C3H/He mice were inoculated i.v. with allogeneic spleen cells untreated or treated with neuraminidase. Appreciable or potent anti-allo-delayed-type hypersensitivity (DTH) responses were observed when mice were inoculated i.v. with untreated allogeneic cells or inoculated i.v. with those cells followed by s.c. immunization with untreated allogeneic cells. In contrast, i.v. inoculation of neuraminidase-treated allogeneic cells (presensitization) not only failed to induce any significant anti-allo-DTH responses but also abolished the capability of the animals to develop DTH responses after s.c. immunization, indicating the tolerance induction. This tolerance was alloantigen-specific, and rapidly inducible and long lasting. The induction of suppressor cell activity was demonstrated in tolerant mice. However, this activity was associated only with the tolerant state around 4 to 7 days after the i.v. presensitization, but was no longer detected in mice more than 14 days after the presensitization, although these mice exhibited complete tolerant state. When spleen cells from such tolerant mice were transferred i.v. into 600 R x-irradiated syngeneic recipient mice alone or together with normal syngeneic spleen cells, these tolerant spleen cells themselves failed to induce DTH responses but did not exhibit suppressive effect on the generation of DTH responses induced by normal spleen cells co-transferred. These results indicate that i.v. administration of neuraminidase-treated allogeneic cells results in the induction of alloantigen-specific tolerance which is not always associated with the induction of suppressor cell activity but rather with the elimination or functional impairment of alloantigen-specific clones.  相似文献   

9.
The delayed-type hypersensitivity reaction (DTH) in mice tolerant to allo- and xenoantigens has been investigated. To induce tolerance adult mice were thymectomized and given 1 X 10(8) allogeneic or xenogeneic spleen cells and cyclophosphamide (200 mg/kg). Such mice failed to develop DTH to donor antigens, while DTH reaction to foreign allo- and xenoantigens was retained. Spleen cells of mice tolerant to alloantigens significantly suppressed the afferent and efferent DTH phases. The suppression was specific and T-cell-mediated. Spleen cells of mice tolerant to xenoantigens could suppress only the afferent DTH phase. The treatment of cells with anti-T-globulin and complement did not abrogate the suppression. The role of DTH suppressors in the induction and maintenance of transplantation tolerance is discussed.  相似文献   

10.
Subcutaneous (sc) immunization of mice with H-2K, I, or D incompatible spleen cells induces a state of host-versus-graft (HvG) delayed-type hypersensitivity (DTH). The DTH reaction is elicited by challenging the immunized mice in a hind foot with similar allogeneic spleen cells and is measured as the subsequent foot swelling. DTH effector T cells specific for H-2I-coded alloantigens, but not for H-2K/D-coded alloantigens, can be induced in a graft-versus-host (GvH) model as well. In this paper we report that under HvG as well as under GvH conditions the recognition of class II antigens by DTH effector T cells is restricted by class I molecules. Furthermore, DTH effector T cells induced by sc immunization with class I antigens appear to be restricted by class II molecules.  相似文献   

11.
Suppressor cells for delayed footpad reaction (DFR) against syngeneic testicular cells (TC) were detected in the spleen cells of donor mice immunized intravenously (iv) with viable syngeneic TC. Cyclophosphamide (CY)-pretreated recipients were given spleen cells from donors iv, immunized subcutaneously (sc) with syngeneic TC, and the footpad reaction at 24 hr was elicited with syngeneic TC 6 days after immunization. DFR in the recipients was suppressed by the transfer of spleen suppressor cells. The suppressor cells induced were Thy-1+, CY-sensitive, adult thymectomy (ATx)-resistant and act only at the induction stage. They directly suppress the generation of effector T cells for delayed-type hypersensitivity (DTH). When mice pretreated with CY were actively immunized with syngeneic TC, DFR could be provoked to a measurable level only when they were immunized sc. However, peritoneal exudate cells of those tolerant mice immunized sc without CY pretreatment or immunized iv with CY pretreatment also passively transferred DFR locally, suggesting the existence of effector T cells for DTH even in tolerant mice.  相似文献   

12.
The induction of suppression by i.v. administered alloantigens in the murine host was analyzed as a model of the possible effects of blood transfusion on transplant survival. The results indicated that suppressor T cells (Ts) specific for minor histocompatibility alloantigens could be readily induced by the i.v. presentation of minor alloantigen-disparate spleen cells. In contrast, similar priming with cells differing solely at the H-2 major histocompatibility complex stimulated only positive T cell immunity, with no evidence of suppression. The induction of H-2 directed Ts activity could be accomplished only by i.v. priming with major plus minor incompatible donor cells, suggesting that suppressor cell recognition of minor alloantigens may have facilitated the generation of Ts against H-2-encoded major transplantation antigens. A role for minor histocompatibility antigens in the regulation of H-2-specific immunity at the effector level was also indicated. Ts induced by i.v. pretreatment with minor antigen-disparate donor cells not only suppressed the delayed-type hypersensitivity (DTH) response to the relevant minor alloantigens, but also inhibited DTH against unrelated H-2 alloantigens introduced during subsequent intradermal immunization. Suppression of H-2-directed T cell reactivity was specific in that the presence of the Ts-inducing minor alloantigens was also required and occurred only when the minor and unrelated major alloantigens were presented within the same inoculum, if not on the same cell surface. The capacity of Lyt-2+Ts or Ts-derived suppressive factors specific for one set of cell surface molecules to modulate responses to an unrelated group of surface antigens does not appear to represent a general phenomenon, because similar suppression of immunity to unrelated tumor-specific transplantation antigens by minor-specific Ts was not observed. These results are discussed with respect to the possible mechanism of H-2-directed suppression and the role of the I region in Ts recognition of antigen.  相似文献   

13.
Subcutaneous (s.c.) immunization of mice with allogeneic spleen cells can induce delayed-type hypersensitivity (DTH) to both major and minor histocompatibility antigens. Intravenous immunization with allogeneic spleen cells, however, induces a poor state of DTH. Furthermore, i.v. immunization with allogeneic spleen cells, especially if they have been irradiated, induces suppressor T lymphocytes. These suppressor T cells are capable of suppressing the host-vs-graft (HvG) DTH reactivity that normally arises after s.c. immunization. Moreover, they can suppress the development of anti-host DTH effector T cells during graft-vs-host (GvH) reactions. These models for HvG and GvH DTH reactivity were used to study the influence of 2'-deoxyguanosine (dGuo) and guanosine (Guo) on the generation of DTH-reactive T cells and suppressor T cells in vivo. It was found that daily i.p. administration of 0.01 mg dGuo to mice immunized i.v. partially prevented the generation of suppressor T cell activity, whereas daily administration of 0.1 or 1 mg dGuo resulted in a complete abolition. Administration of dGuo has no effect on the anti-host DTH reactivity by spleen cells from nonsuppressed donors except for when a daily dose of 10 mg is administered. This dose proved to be toxic for precursors of DTH effector T cells. Daily i.p. injection of Guo had no effect on the generation of suppressor T cells nor on the generation of DTH effector T cells. The effect of dGuo was found to be due to a direct effect on suppressor T cells and not to the induction of contrasuppressor cells. These data suggest a differential sensitivity of DTH-reactive T cells and suppressor T cells for dGuo. Because suppressor T cells and DTH-reactive T cells require proliferation for expressing maximal functional activity in the systems used, both cell types probably have different enzyme activities involved in the purine metabolism and similar deoxycytidine kinase activities, but have different nucleotidase (5'NT) activities, those in suppressor T cells being the lowest. If so, suppressor T cells will accumulate deoxyguanosine triphosphate, which causes an inhibition of the ribonucleotide reductase activity and thus of the DNA synthesis by these cells.  相似文献   

14.
Pretreatment of Lewis rats with a single i.p. injection of ABA-N-acetyl-tyrosine in incomplete Freund's adjuvant induced an unresponsiveness for delayed-type hypersensitivity to subsequent immunization with the same antigen in complete Freund's adjuvant. Complete suppression of in vitro antigen-induced proliferative responses required repeated pretreatment. Passive transfer of lymphoid cells from spleen and lymph nodes but not sera from suppressed rats induced unresponsiveness of hapten-specific T cell functions. Nylon wool-nonadherent cells and cells panned on F(ab')2 of rabbit anti-Lewis rat Ig plates suppressed the induction of DTH and in vitro antigen-stimulated proliferation. Adult thymectomy increased DTH and failed to abolish the induction of suppression.  相似文献   

15.
Mice injected intravenously with 1 X 10(9) sheep red blood cells (SRBC) showed no delayed-type hypersensitivity (DTH) response to SRBC and were unresponsive to DTH induction by sc injection of an optimal dose of SRBC. However, when treated with T-2 toxin, a mycotoxin, 2 days after the iv injection, mice became to show significant DTH response and to be responsive to the DTH induction by the sc injection. When the spleen cells of the mice receiving the iv injection were transferred to unsensitized syngeneic recipients, the DTH response of the recipients to SRBC was suppressed. However, the suppressor activity of the spleen cells was decreased by T-2 toxin treatment. By the iv injection, cell population of the spleen was increased and that of the thymus decreased. In contrast, by T-2 toxin treatment 2 days after the iv injection, cell population of the spleen was not increased and that of the thymus was markedly decreased. The ratio of theta-bearing cells was increased in the spleen by the iv injection. However, such increase was not observed after the T-2 toxin treatment. The ratio of Ig-bearing cells in the spleen was not changed by the iv injection and the T-2 toxin treatment after the iv injection. T-2 toxin seems to interfere with generation of suppressor cells for the DTH response.  相似文献   

16.
The relationship between immunosuppression and suppressor cell activity in the lymphoid organs of animals with experimental African trypanosomiasis has been examined further. In the present study we measure the primary in vitro PFC response to SRBC by spleen and lymph node cells from Trypanosoma rhodesiense infected or drug-cured C57BL/6 mice. Passive transfer experiments with this culture system tested for the presence or absence of suppressor cells. We demonstrate that infected mice exhibit immunosuppression in the spleen cell population several weeks before becoming suppressed at the level of the lymph node cell populations. Although suppressor cells are present in immunosuppressed spleen cell populations, suppression of lymph node cell responsiveness was not attributable to suppressor cells detectable withi, lymph nodes. After Berenil treatment of terminally infected mice immunocompetence was restored gradually, first to the lymph node cells and subsequently to the spleen cell population. Recovery of spleen cell responsiveness was attributable to the loss of detectable suppressor cell activity within spleens. These results demonstrate that there is anatomical restriction of the suppressor cell population to trypanosome-infected mouse spleen and that loss of immunocompetence in the lymph nodes may be due to factors unrelated to suppressor cell effects.  相似文献   

17.
Experiments were carried out to determine whether or not the cell populations involved in DTH and in the suppression of antibody response are identical. The effects of four treatments, i.e., adult thymectomy (ATx), X-irradiation, anti-mouse thymocyte serum (ATS) and hydrocortisone (HC) on the induction of DTH and on the carrier-specific suppression of antibody response were observed in mice immunized with chemically modified antigen, dodecanoyl-BSA (d-BSA), emulsified with complete Freund's adjuvant (CFA), with the following results: 1) DTH induced by immunization with D -BSA remained constant in adult thymectomized mice, whereas the suppression of antibody response was not inducible in these animals. 2) Injection of low doses of ATS caused the depression of DTH in mice primed with D -BSA, but did not affect the suppressive activities of their spleen cells. 3) Sublethal X-irradiation 1 week prior to D -BSA priming inhibited the generation of suppressor cells but did not affect the generation of cells mediating DTH. The suppressive effect was also abrogated by sublethal X-irradiation given 2 days after immunization with DNP-BSA (14 days after priming with D -BSA). 4) The treatment of animals with HC 2 days before the footpad challenge or immunization with DNP-BSA depressed the ability of animals to induce both DTH and the suppression of antibody response. However, the latter was more sensitive to HC than the former. In addition to these results, it was also found that D -BSA-primed spleen cells were capable of suppressing anti-DNP response, but not of inducing DTH-reactivity upon transfer to recipient mice. These results suggest that DTH-reactivity and the carrier-specific suppression of anti-hapten antibody response induced by injection of D -BSA are mediated by different cell populations.  相似文献   

18.
Mice were immunized for contact sensitivity and antibody production by painting the skin with picryl chloride. Lymph node and spleen cells taken 4 days later transferred contact sensitivity. However, cells taken at 7–8 days failed to transfer but were able to block the transfer by 4 day immune cells. These suppressor cells occurred in the regional lymph nodes, spleen and thymus. The suppressor activity of lymph node and spleen cells was due to B cells as shown by the effect of anti-θ serum and complement, nylon wool filtration and separation of EAC positive and negative cells by centrifugation on a discontinuous gradient. The transfer of fractions rich or poor in macrophages showed that the suppressor cell in the transferred population was not a macrophage. Separation using EAC rosettes suggested that B cells were responsible for the suppressor activity in the thymus.T cells isolated from the lymph nodes and spleen 7–8 days after immunization transferred contact sensitivity although the initial population was inactive. This indicates that passive transfer cells are present in the regional lymph nodes and spleen at later times after immunization but cannot be demonstrated because of the presence of suppressor B cells. However, no passive transfer cells were found in the thymus. The production of B suppressor cells required little or no T cell help and following immunization the spleens of reconstituted (B) mice were at least as active as control cells in causing suppression. There are several different suppressor cells which act in the picryl system and the B suppressor cells in immunized mice described here are distinct from the T suppressor cells in mice injected with picryl sulphonic acid.  相似文献   

19.
Antigen-nonspecific CD8+ T suppressor cells, which suppressed delayed-type hypersensitivity (DTH) against sheep red blood cells in BALB/c mice, were induced by incubating spleen cells from mice treated with 7,12-dimethylbenz[a]anthracene (DMBA), a tumor initiator, with 12-O-tetradecanoylphorbol 13-acetate (TPA), a tumor promoter. The optimal condition was incubation in 3.2 x 10(-8) mol/5 ml of TPA for 4 days. It was shown that induction of the suppressor cells required macrophages from mice treated with DMBA. These data were consistent with the results of previous work, in which CD8+ suppressor cells were induced by painting BALB/c mice with TPA following DMBA treatment. DTH was suppressed in the culture supernatants of spleen cells from mice treated with DMBA and TPA; the suppression was genetically unrestricted. The suppressor factor was resistant to trypsin and sensitive to heating at 56 degrees C for 30 min and had affinity for the macrophages.  相似文献   

20.
Experiments were performed on mice to investigate the effects of pertussis toxin (PT) on delayed-type hypersensitivity (DTH) to ovalbumin (OA) and on the activity of suppressor T cells on the DTH (DTH-Ts). Mice immunized with alum-precipitated ovalbumin showed a transient DTH, which was determined as footpad swelling which disappeared 2 weeks after immunization. Maximal footpad swelling was observed 24 hr after DTH elicitation. On the other hand, when mice received PT (2 micrograms/mouse) at the time of immunization, the transient DTH became an enhanced and persistent DTH, which persisted for at least 4 weeks. In addition, the time of maximum footpad swelling was delayed from 24 to 48 hr after DTH elicitation. The immune spleen T cells from PT-treated mice showed a persistently high ability to transfer DTH into syngenic naive mice. DTH-Ts was induced in spleens of mice injected iv with OA-coupled syngeneic spleen cells. However, when these mice received PT at the time of suppressor induction, their spleen cells revealed considerably reduced suppressor activity. The activity of DTH-Ts was also reduced when DTH-Ts were either treated in vitro with PT or transferred into PT-injected recipient mice. From these results, interference with the suppressor function of DTH-Ts from PT was considered to be, at least in part, as an enhancing mechanism of DTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号