首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the multienzyme catalyzing the formation of ACV from the constituent amino acids and ATP in the presence of Mg2+ and dithioerythritol, was purified about 2700-fold from Streptomyces clavuligerus. The molecular mass of the native enzyme as determined by gel filtration chromatography is 560 kDa, while that determined by denaturing gel electrophoresis is 500 kDa. The enzyme is able to catalyze pyrophosphate exchange in dependence on L-cysteine and L-valine, but no L-alpha-aminoadipic-acid-dependent ATP/PPi exchange could be detected. Other L-cysteine- and L-valine-activating enzymes present in crude extracts were identified as aminoacyl-tRNA synthetases which could be separated from ACV synthetase. The molecular mass of these enzymes is 140 kDa for L-valine ligase and 50 kDa for L-cysteine ligase. The dissociation constants have been estimated, assuming three independent activation sites, to be 1.25 mM and 1.5 mM for cysteine and ATP, and 2.4 mM and 0.25 mM for valine and ATP, respectively. The enzyme forms a thioester with alpha-aminoadipic acid and with valine in a molar ratio of 0.6:1 (amino acid/enzyme). Thus, the bacterial ACV synthetase is a multifunctional peptide synthetase, differing from fungal ACV synthetases in its mechanism of activation of the non-protein amino acid.  相似文献   

2.
The Aspergillus nidulans gene (acvA) encoding the first catalytic steps of penicillin biosynthesis that result in the formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), has been positively identified by matching a 15-amino acid segment of sequence obtained from an internal CNBr fragment of the purified amino-terminally blocked protein with that predicted from the DNA sequence. acvA is transcribed in the opposite orientation to ipnA (encoding isopenicillin N synthetase), with an intergenic region of 872 nucleotides. The gene has been completely sequenced at the nucleotide level and found to encode a protein of 3,770 amino acids (molecular mass, 422,486 Da). Both fast protein liquid chromatography and native gel estimates of molecular mass are consistent with this predicted molecular weight. The enzyme was identified as a glycoprotein by means of affinity blotting with concanavalin A. No evidence for the presence of introns within the acvA gene has been found. The derived amino acid sequence of ACV synthetase (ACVS) contains three homologous regions of about 585 residues, each of which displays areas of similarity with (i) adenylate-forming enzymes such as parsley 4-coumarate-CoA ligase and firefly luciferase and (ii) several multienzyme peptide synthetases, including bacterial gramicidin S synthetase 1 and tyrocidine synthetase 1. Despite these similarities, conserved cysteine residues found in the latter synthetases and thought to be essential for the thiotemplate mechanism of peptide biosynthesis have not been detected in the ACVS sequence. These observations, together with the occurrence of putative 4'-phosphopantetheine-attachment sites and a putative thioesterase site, are discussed with reference to the reaction sequence leading to production of the ACV tripeptide. We speculate that each of the homologous regions corresponds to a functional domain that recognizes one of the three substrate amino acids.  相似文献   

3.
Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteine, and L-valine into the tripeptide ACV. ACV synthetase has previously been localized to the vacuole where it is thought to utilize amino acids from the vacuolar pools. We localized ACV synthetase by subcellular fractionation and immuno-electron microscopy under conditions that prevented proteolysis and found it to co-localize with isopenicillin N synthetase in the cytosol, while acyltransferase localizes in microbodies. These data imply that the key enzymatic steps in penicillin biosynthesis are confined to only two compartments, i.e., the cytosol and microbody.  相似文献   

4.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) was purified from Streptomyces clavuligerus by a combination of salt precipitation, ultrafiltration, and anion-exchange chromatography. The final purified material gave two protein bands with molecular weights of 283,000 and 32,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis in nondenaturing gels gave a single protein band with an estimated molecular weight of 560,000. These results suggest that ACVS is a multimer composed of nonidentical subunits.  相似文献   

5.
The incorporation of valine into the LLD-tripeptide, delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine, a precursor of penicillin, was studied by incubating mycelial mats of Penicillium chrysogenum Wis. 49-2105 with double labelled valines. L-valine was incorporated into the LLD-tripeptide without formation of an alpha, beta-didehydrovaline intermediate. Intact D-valine was not incorporated into the LLD-tripeptide.  相似文献   

6.
delta-(L-alpha-aminoadipyl)-L-cysteine synthetase (LL-AC synthetase) activity has been found in extracts of Cephalosporium acremonium C-10. The enzyme extract carries out a linear synthesis of LL-AC from its constituent amino acids for at least 6 hours. The reaction is dependent on active enzyme, time, L-alpha-aminoadipate, L-cysteine, ATP and Mn2+ or Mg2+. The activity is stabilized by glycerol.  相似文献   

7.
The content of alpha-aminoadipyl-cysteinyl-valine, the first intermediate of the penicillin biosynthetic pathway, decreased when Penicillium chrysogenum was grown in a high concentration of glucose. Glucose repressed the incorporation of [14C]valine into alpha-aminoadipyl-cysteinyl-[14C]valine in vivo. The pool of alpha-aminoadipic acid increased sevenfold in control (lactose-grown) penicillin-producing cultures, coinciding with the phase of rapid penicillin biosynthesis, but this increase was very small in glucose-grown cultures. Glucose stimulated homocitrate synthase and saccharopine dehydrogenase activities in vivo and increased the incorporation of lysine into proteins. These results suggest that glucose stimulates the flux through the lysine biosynthetic pathway, thus preventing alpha-aminoadipic acid accumulation. The repression of alpha-aminoadipyl-cysteinyl-valine synthesis by glucose was not reversed by the addition of alpha-aminoadipic acid, cysteine, or valine. Glucose also repressed isopenicillin N synthase, which converts alpha-aminoadipyl-cysteinyl-valine into isopenicillin N, but did not affect penicillin acyltransferase, the last enzyme of the penicillin biosynthetic pathway.  相似文献   

8.
A cell-free extract of Cephalosporium acremonium (Takeda N-2) was obtained that synthesized the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and also the dipeptide delta-(L-alpha-aminoadipyl)-L-cysteine from the corresponding L-amino acids.  相似文献   

9.
D J Smith  A J Earl    G Turner 《The EMBO journal》1990,9(9):2743-2750
The nucleotide sequence of the Penicillium chrysogenum Oli13 acvA gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, which performs the first step in penicillin biosynthesis, has been determined. The acvA gene contains an open reading frame of 11,238 bp encoding a protein of 3746 amino acids with a predicted mol. wt of 421,073 dalton. Three domains within the protein of approximately 570 amino acids have between 38% and 43% identity with each other and share similarity with two antibiotic peptide synthetases from Bacillus brevis as well as two other enzymes capable of performing ATP-pyrophosphate exchange reactions. The acvA gene is located close to the pcbC gene encoding isopenicillin N synthetase, the enzyme for the second step of beta-lactam biosynthesis, and is transcribed in the opposite orientation to it. The intergenic region of 1107 bp from which the acvA and pcbC genes are divergently transcribed has also been sequenced.  相似文献   

10.
Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete.  相似文献   

11.
12.
Cell-free extracts of antibiotic-negative mutants of Cephalosporium acremonium converted delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (LLD-tripeptide) into an antibiotic that was destroyed by penicillinase. The enzymic activity of the extracts was destroyed by boiling, but was not inhibited by cycloheximide. LLL-Tripeptide was totally inactive as substrate. The product resembled isopenicillin N, but not penicillin N, in its antibacterial spectrum. We propose that isopenicillin N is the first product of cyclization of LLD-tripeptide.  相似文献   

13.
Genome sequencing of Aspergillus species including Aspergillus nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites, which have not yet been elucidated. The A. nidulans genome contains 12 nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/NRPS, and 14 NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA, which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in Aspergillus niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.  相似文献   

14.
15.
1. The stereoisomers of delta-(alpha-aminoadipyl)-L-cysteinylvaline (LLD, LLL and DLD) were synthesized from valine labelled with 3H in its methyl groups or in the alpha position. L-Cysteinyl-D-[4,4'-3H]valine was also synthesized. 2. 3H was incorporated into a compound that behaved like penicillin N when the LLD tripeptide containing either a methyl- or an alpha-labelled valine residue was incubated with a cell-free system prepared by lysis of protoplasts of Cephalosporium acremonium. 3. Incorporation was not observed under these conditions from the labelled all-L- or DLD-tripeptide, from L-cysteinyl-D-[4,4'-3H]valine, or of Penicillium chrysogenum appeared to be the LLD isomer, like that from C. acremonium. 5. These findings are discussed in relation to penicillin biosynthesis.  相似文献   

16.
The beta-lactam antibiotic penicillin is produced as a secondary metabolite by some filamentous fungi. In this study, the molecular regulation of the Aspergillus (Emericella) nidulans penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) was analyzed. acvA and ipnA are divergently oriented and separated by an intergenic region of 872 bp. Translational fusions of acvA and ipnA with the two Escherichia coli reporter genes lacZ and uidA enabled us to measure the regulation of both genes simultaneously. A moving-window analysis of the 872-bp intergenic region indicated that the divergently oriented promoters are, at least in part, overlapping and share common regulatory elements. Removal of nucleotides -353 to -432 upstream of the acvA gene led to a 10-fold increase of acvA-uidA expression and simultaneously to a reduction of ipnA-lacZ expression to about 30%. Band shift assays and methyl interference analysis using partially purified protein extracts revealed that a CCAAT-containing DNA element within this region was specifically bound by a protein (complex), which we designated PENR1, for penicillin regulator. Deletion of 4 bp within the identified protein binding site caused the same contrary effects on acvA and ipnA expression as observed for all of the deletion clones which lacked nucleotides -353 to -432. The PENR1 binding site thus represents a major cis-acting DNA element. The intergenic regions of the corresponding genes of the beta-lactam-producing fungi Penicillium chrysogenum and Acremonium chrysogenum also diluted the complex formed between the A. nidulans probe and PENR1 in vitro, suggesting that these beta-lactam biosynthesis genes are regulated by analogous DNA elements and proteins.  相似文献   

17.
The filamentous ascomycete A. nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin intracellularly. In this study we report the characterization of two siderophore biosynthetic genes, sidA encoding l-ornithine N(5)-monooxygenase and sidC encoding a non-ribosomal peptide synthetase respectively. Disruption of sidC eliminated synthesis of ferricrocin and deletion of sidA completely blocked siderophore biosynthesis. Siderophore-deficient strains were unable to grow, unless the growth medium was supplemented with siderophores, suggesting that the siderophore system is the major iron assimilatory system of A. nidulans during both iron depleted and iron-replete conditions. Partial restoration of the growth of siderophore-deficient mutants by high concentrations of Fe(2+) (but not Fe(3+)) indicates the presence of an additional ferrous transport system and the absence of an efficient reductive iron assmilatory system. Uptake studies demonstrated that TAFC-bound iron is transferred to cellular ferricrocin whereas ferricrocin is stored after uptake. The siderophore-deficient mutant was able to synthesize ferricrocin from triacetylfusarinine C. Ferricrocin-deficiency caused an increased intracellular labile iron pool, upregulation of antioxidative enzymes and elevated sensitivity to the redox cycler paraquat. This indicates that the lack of this cellular iron storage compound causes oxidative stress. Moreover, ferricrocin biosynthesis was found to be crucial for efficient conidiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号