首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Johannsen B 《Amino acids》2005,29(4):307-311
Summary. Radioactive isotopes are uniquely applicable to observe reactions or circuits of reactions at the molecular level without disturbing the system being studied. The advent of molecular imaging modalities, particularly positron emission tomography (PET), is a major breakthrough for the visualisation and quantitative assessment of cellular and molecular processes occurring in living tissues. The recent development of animal PET scanners that offers 2-mm resolution and is tailored to laboratory rodent models, has made a further great impact on in vivo biochemistry. With these live-imaging modalities at hand, radiotracer-based technologies allow to look directly at biochemical distribution and interaction processes. Tremendous progress made in radiotracer chemistry, primarily in carbon-11 and fluorine-18 radiochemistry, and in the design of imaging devices strengthens the usefulness of radiotracers in nuclear medicine and drug research and development and opens exciting opportunities for new applications, e.g., in food science.  相似文献   

2.
Wuest F 《Amino acids》2005,29(4):323-339
Summary. Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min). Longer-lived radioisotopes are available by using 76Br (t1/2 = 16.2 h) and 124I (t1/2 = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with 11C or via prosthetic group labelling approaches using the positron emitting halogens 18F, 76Br and 124I.  相似文献   

3.
Summary. Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a naturally occurring phytoalexin and polyphenol existing in grapes and various other plants, and one of the best known ‘nutriceuticals’. It shows a multiplicity of beneficial biological effects, particularly, by attenuating atherogenic, inflammatory, and carcinogenic processes. However, despite convincing evidence from experimental and clinical studies, data concerning the role of resveratrol and other members of the large polyphenols family for human health is still a matter of debate. One reason for this is the lack of suitable sensitive and specific methods, which would allow direct assessment of biodistribution, biokinetics, and the metabolic fate of these compounds in vivo. The unique features of positron emission tomography (PET) as a non-invasive in vivo imaging methodology in combination with suitable PET radiotracers have great promise to assess quantitative information on physiological effects of polyphenols in vivo. Herein we describe the radiosynthesis of an 18F-labelled resveratrol derivative, 3,5-dihydroxy-4′-[18F]fluoro-trans-stilbene ([18F]-1), using the Horner-Wadsworth-Emmons reaction as a novel radiolabelling technique in PET radiochemistry for subsequent functional imaging of polyphenol metabolism in vivo. In a typical “three-step/one-pot” reaction, 18F-labelled resveratrol derivative [18F]-1 could be synthesized within 120–130 min including HPLC separation at a specific radioactivity of about 90 GBq/μmol. The radiochemical yield was about 9% (decay-corrected) related to [18F]fluoride and the radiochemical purity exceeded 97%. First radiopharmacological evaluation included measurement of biodistribution ex vivo and positron emission tomography (PET) studies in vivo after intravenous application of [18F]-1 in male Wistar rats using a dedicated small animal PET camera with very high spatial resolution. Concordantly with data on bioavailability and metabolism of native resveratrol from the literature, these investigations revealed an extensive uptake and metabolism in the liver and kidney, respectively, of [18F]-1. This study represents the first investigation of polyphenols in vivo by means of PET.  相似文献   

4.
van den Hoff J 《Amino acids》2005,29(4):341-353
Summary. The central distinguishing feature of positron emission tomography (PET) is its ability to investigate quantitatively regional cellular and molecular transport processes in vivo with good spatial resolution. This review wants to provide a concise overview of the established principles underlying quantitative data evaluations of the acquired PET images. Especially, the compartment modelling framework is discussed on which virtually all quantification methods utilized in PET are based. The aim of the review is twofold: first, to provide the reader with an idea of the theoretical framework and mathematical tools and second, to enable an intuitive grasp of the possibilities and limitations of a quantitative approach to PET data evaluation. This should facilitate an understanding of how PET measurements translate into quantities such as regional blood flow, volume of distribution, and metabolic rates of specific substrates.  相似文献   

5.
6.
Summary. The human organism is exposed to numerous processes that generate reactive oxygen species (ROS). ROS may directly or indirectly cause oxidative modification and damage of proteins. Protein oxidation is regarded as a crucial event in the pathogenesis of various diseases ranging from rheumatoid arthritis to Alzheimer’s disease and atherosclerosis. As a representative example, oxidation of low density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Data concerning the role of circulating oxidized LDL (oxLDL) in the development and outcome of diseases are scarce. One reason for this is the shortage of methods for direct assessment of the metabolic fate of circulating oxLDL in vivo. We present an improved methodology based on the radiolabelling of apoB-100 of native LDL (nLDL) and oxLDL, respectively, with the positron emitter fluorine-18 (18F) by conjugation with N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabelling of both nLDL and oxLDL using [18F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively, in vitro. The method was further evaluated with respect to the radiopharmacological properties of both [18F]fluorobenzoylated nLDL and oxLDL by biodistribution studies in male Wistar rats. The metabolic fate of [18F]fluorobenzoylated nLDL and oxLDL in rats in vivo was further delineated by dynamic positron emission tomography (PET) using a dedicated small animal tomograph (spatial resolution of 2 mm). From this study we conclude that the use of [18F]FB-labelled LDL particles is an attractive alternative to, e.g., LDL iodination methods, and is of value to characterize and to discriminate the kinetics and the metabolic fate of nLDL and oxLDL in small animals in vivo.  相似文献   

7.
Wang M  Yang J  Chou KC 《Amino acids》2005,28(4):395-402
Summary. Owing to the importance of signal peptides for studying the molecular mechanisms of genetic diseases, reprogramming cells for gene therapy, and finding new drugs for healing a specific defect, it is in great demand to develop a fast and accurate method to identify the signal peptides. Introduction of the so-called {−3,−1, +1} coupling model (Chou, K. C.: Protein Engineering, 2001, 14–2, 75–79) has made it possible to take into account the coupling effect among some key subsites and hence can significantly enhance the prediction quality of peptide cleavage site. Based on the subsite coupling model, a kind of string kernels for protein sequence is introduced. Integrating the biologically relevant prior knowledge, the constructed string kernels can thus be used by any kernel-based method. A Support vector machines (SVM) is thus built to predict the cleavage site of signal peptides from the protein sequences. The current approach is compared with the classical weight matrix method. At small false positive ratios, our method outperforms the classical weight matrix method, indicating the current approach may at least serve as a powerful complemental tool to other existing methods for predicting the signal peptide cleavage site. The software that generated the results reported in this paper is available upon requirement, and will appear at http://www.pami.sjtu.edu.cn/wm. An erratum to this article is available at .  相似文献   

8.
A β-glucosidase that cleaves the biologically inactive hormone conjugates cytokinin-O- and kinetin-N3-glucosides is encoded by the maize Zm-p60.1 gene. The expression of the Zm-p60.1 gene was analyzed by Northern blot analysis and in-situ hybridization. It was found that the expression levels of the Zm-p60.1-specific mRNA changed after pollination of carpellate inflorescences. The Zm-p60.1 cDNA was expressed in E. coli and antibodies were raised against this protein. An antibody was used to determine the tissue-specific localization of this protein. By in situ immunolocalization experiments, this protein was found to be located in cell layers below the epidermis and around the vascular bundles of the coleoptile. In the primary leaf, the Zm-p60.1 protein was detected in cells of the outermost cell layer and around the vascular tissue. In floral tissue, Zm-p60.1 was present in the glumes, the carpels and in the outer cell layer of the style. In coleoptiles, as determined by immuno-electronmicroscopy, the Zm-p60.1 protein was located exclusively in the plastids. Received: 11 August 1998 / Accepted: 30 December 1998  相似文献   

9.
The enormous advances in our understanding of the progression of diseases at the molecular level have been supplemented by the new field of ‘molecular imaging’, which provides for in vivo visualization of molecular events at the cellular level in living organisms. Molecular imaging is a noninvasive assessment of gene and protein function, protein–protein interaction and/or signal transduction pathways in animal models of human disease and in patients to provide insights into molecular pathogenesis. Five major imaging techniques are currently available to assess the structural and functional alterations in vivo in small animals. These are (i) optical bioluminescence and fluorescence imaging techniques, (ii) radionuclide-based positron emission tomography (PET) and single photon emitted computed tomography (SPECT), (iii) X-ray-based computed tomography (CT), (iv) magnetic resonance imaging (MRI) and (v) ultrasound imaging (US). Functional molecular imaging requires an imaging probe that is specific for a given molecular event. In preclinical imaging, involving small animal models, the imaging probe could be an element of a direct (‘direct imaging’) or an indirect (‘indirect imaging’) event. Reporter genes are essential for indirect imaging and provide a general integrated platform for many different applications. Applications of multimodality imaging using combinations of bioluminescent, fluorescent and PET reporter genes in unified fusion vectors developed by us for recording events from single live cells to whole animals with high sensitivity and accurate quantification are discussed. Such approaches have immense potential to track progression of metastasis, immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects.  相似文献   

10.
Summary. The pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer’s disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer’s disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.  相似文献   

11.
Fruit-specific lectins from banana and plantain   总被引:6,自引:0,他引:6  
 One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety. Received: 1 December 1999 / Accepted: 31 January 2000  相似文献   

12.
Atomic force microscopy (AFM) enables the topographical structure of cells and biological materials to be resolved under natural (physiological) conditions, without fixation and dehydration artefacts associated with imaging methods in vacuo. It also provides a means of measuring interaction forces and the mechanical properties of biomaterials. In the present study, AFM has been applied for the first time to the study of the mechanical properties of a natural adhesive produced by a green plant cell. Swimming spores of the green alga Enteromorpha linza (L.) J. Ag. (7–10 μm) secrete an adhesive glycoprotein which provides firm anchorage to the substratum. Imaging of the adhesive in its hydrated state revealed a swollen gel-like pad, approximately 1 μm thick, surrounding the spore body. Force measurements revealed that freshly released adhesive has an adhesion strength of 173 ± 1.7 mN m−1 (mean ± SE; n=90) with a maximum value for a single adhesion force curve of 458 mN m−1. The adhesive had a compressibility (equivalent to Young's modulus) of 0.54 × 106 ± 0.05 × 106 N m−2 (mean ± SE; n=30). Within minutes of release the adhesive underwent a progressive `curing' process with a 65% reduction in mean adhesive strength within an hour of settlement, which was also reflected in a reduction in the average length of the adhesive polymer strands (polymer extension) and a 10-fold increase in Young's modulus. Measurements on the spore surface itself revealed considerably lower adhesion-strength values but higher polymer-extension values than the adhesive pad, which may reflect the deposition of different polymers on this surface as a new cell wall is formed. The study demonstrates the value of AFM to the imaging of plant cells in the absence of fixation and dehydration artefacts and to the characterisation of the mechanical properties of plant glycoproteins that have potential utility as adhesives. Received: 22 February 2000 / Accepted: 20 April 2000  相似文献   

13.
 Two acyl-CoA-binding-protein (ACBP) isoforms were isolated from proembryogenic masses of Digitalis lanata Ehrh. by column chromatography and preparative HPLC. The ACBPs had molecular masses of 9926 and 9997 Da, respectively. Partial sequence data indicated high similarity to each other and to ACBPs of other plant species such as Ricinus communis, Brassica napus and Arabidopsis thaliana. The isolated ACBPs bound palmitoyl-CoA with high affinity as determined by isoelectric-point shift. Received: 29 May 1999 / Accepted: 28 August 1999  相似文献   

14.
Henle T 《Amino acids》2005,29(4):313-322
Summary. The Maillard reaction or nonenzymatic browning is of outstanding importance for the formation of flavour and colour of heated foods. Corresponding reactions, also referred to as “glycation”, are known from biological systems, where the formation of advanced glycation endproducts (AGEs) shall play an important pathophysiological role in diabetes and uremia. In this review, pathways leading to the formation of individual protein-bound lysine and arginine derivatives in foods are described and nutritional consequences resulting from this posttranslational modifications of food proteins are discussed.  相似文献   

15.
Roos W 《Planta》2000,210(3):347-370
 This review covers both methodical aspects and actual applications of ion imaging techniques in plant cell signal research. The methodological section explains the basic principles of fluorescence ion imaging, the impact of modern developments in fluorescence microscopy and introduces the most important fluorescence probes including aequorin and other photoproteins. It critically comments on loading strategies, intracellular compartmentation of probes and calibration procedures. The second part compiles actual research areas where the application of ion imaging procedures has gained substantial achievements and helped to establish new concepts of calcium- and pH-dependent signalling. Examples comprise the hormonal control of stomatal movements, effects of gibberellic and abscisic acids in aleurone cells, elicitation of phytoalexin production, cytosolic pH and cell development, and signatures of Ca2+ as a universal signal in plant cells. Received: 26 May 1999 / Accepted: 2 August 1999  相似文献   

16.
Han YZ  Huang BQ  Zee SY  Yuan M 《Planta》2000,211(1):158-162
 Various membrane-impermeable, water-soluble fluorescent tracers with different molecular weights were microinjected into the central cell of the embryo sac of Torenia fournieri Lind. before and during fertilization. Before anthesis, there was high symplastic permeability between the central cell and the egg apparatus cells. In this stage, fluorescent tracers up to 10 kDa could pass from the central cell into the egg apparatus cells, whereas those with larger molecular weight remained in the central cell. As the embryo sac matured, symplastic permeability decreased such that 2 d after anthesis only tracers less than 3 kDa could spread from the central cell into the egg cell. There appeared to be no symplastic permeability between the primary endosperm and zygote after fertilization, since tracers as small as 521 Da could not pass into the zygote in about half of the microinjected embryo sacs. This is the first report of a change in cell-to-cell communication among the cells of the female germ unit before and after fertilization. Received: 16 December 1999 / Accepted: 4 February 2000  相似文献   

17.
Brandsch M 《Amino acids》2006,31(2):119-136
Summary. Membrane transport of L-proline has received considerable attention in basic and pharmaceutical research recently. Of the most recently cloned members of the solute carrier family, two are “proline transporters”. The amino acid transporter PAT1, expressed in intestine, kidney, brain and other organs, mediates the uptake of proline and derivatives in a pH gradient-dependent manner. The Na+-dependent proline transporter SIT1, cloned in 2005, exhibits the properties of the long-sought classical IMINO system. Proline-containing peptides are of interest for several reasons. Many biologically important peptide sequences contain highly conserved proline residues. Xaa-Pro peptides are very often resistant to enzymatic hydrolysis and display, in contrast to Pro-Xaa peptides, a high affinity to the H+/peptide cotransporter PEPT1 which is expressed in intestinal, renal, lung and biliary duct epithelial cells. Furthermore, several orally available drugs are recognized by PEPT1 as Xaa-Pro analogues due to their sterical resemblance to small peptides.  相似文献   

18.
Hirotani M  Kuroda R  Suzuki H  Yoshikawa T 《Planta》2000,210(6):1006-1013
 A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53 094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in  E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4′-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments. Received: 8 September 1999 / Accepted: 4 October 1999  相似文献   

19.
Positron emission tomography (PET) is well established as an important research and clinical molecular imaging modality. Although the size differences between humans and rodents create formidable challenges for the application of PET imaging in small animals, advances in technology over the past several years have enabled the translation of this imaging modality to preclinical applications. In this article we discuss the basic principles of PET instrumentation and radiopharmaceuticals, and examine the key factors responsible for the qualitative and quantitative imaging capabilities of small animal PET systems. We describe the criteria that PET imaging agents must meet, and provide examples of small animal PET imaging to give the reader a broad perspective on the capabilities and limitations of this evolving technology. A crucial driver for future advances in PET imaging is the availability of molecular imaging probes labeled with positron-emitting radionuclides. The strong translational science potential of small animal and human PET holds great promise to dramatically advance our understanding of human disease. The assessment of molecular and functional processes using imaging agents as either direct or surrogate biomarkers will ultimately enable the characterization of disease expression in individual patients and thus facilitate tailored treatment plans that can be monitored for their effectiveness in each subject.  相似文献   

20.
The influence of pre-industrial animal husbandry on the boreal forest in south-central Sweden has been studied by pollen and charcoal analyses of peat profiles from two mires in the vicinity of a shieling site. The impact of farming on the local vegetation development is demonstrated from cal. A. D. 1300–1500 in three ways: forest clearance and cultivation of cereals at the local shieling site; alterations of hydrology and vegetation, such as an increase in Cyperaceae, at mires used for hay production; changes in the composition in the surrounding forest, with decreasing proportions of Betula, Picea and boreo-nemoral broadleaved trees and a consequent increase in Pinus, due to grazing and a change of fire regime. Similar alterations to the forest vegetation are noted at other sites in central and northern Sweden during the last thousand years, when the system of using shielings became more widespread. Hence, early animal husbandry is demonstrated to have had a regional impact on the long-term boreal forest development, replacing the original mixed deciduous-coniferous forest with Pinus dominated forest. Received November 27, 2001 / Accepted June 20, 2002 Correspondence to: Marie Emanuelsson  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号