首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. S. Wilkinson  F. Mayer  G. Kerth    B. Petri 《Genetics》1997,146(3):1035-1048
Analysis of mitochondrial DNA control region sequences from 41 species of bats representing 11 families revealed that repeated sequence arrays near the tRNA-Pro gene are present in all vespertilionine bats. Across 18 species tandem repeats varied in size from 78 to 85 bp and contained two to nine repeats. Heteroplasmy ranged from 15% to 63%. Fewer repeats among heteroplasmic than homoplasmic individuals in a species with up to nine repeats indicates selection may act against long arrays. A lower limit of two repeats and more repeats among heteroplasmic than homoplasmic individuals in two species with few repeats suggests length mutations are biased. Significant regressions of heteroplasmy, θ and π, on repeat number further suggest that repeat duplication rate increases with repeat number. Comparison of vespertilionine bat consensus repeats to mammal control region sequences revealed that tandem repeats of similar size, sequence and number also occur in shrews, cats and bighorn sheep. The presence of two conserved protein-binding sequences in all repeat units indicates that convergent evolution has occurred by duplication of functional units. We speculate that D-loop region tandem repeats may provide signal redundancy and a primitive repair mechanism in the event of somatic mutations to these binding sites.  相似文献   

2.
Patterns of sequence variation in the mitochondrial D-loop region of shrews   总被引:8,自引:2,他引:6  
Direct sequencing of the mitochondrial displacement loop (D-loop) of shrews (genus Sorex) for the region between the tRNA(Pro) and the conserved sequence block-F revealed variable numbers of 79-bp tandem repeats. These repeats were found in all 19 individuals sequenced, representing three subspecies and one closely related species of the masked shrew group (Sorex cinereus cinereus, S. c. miscix, S. c. acadicus, and S. haydeni) and an outgroup, the pygmy shrew (S. hoyi). Each specimen also possessed an adjacent 76-bp imperfect copy of the tandem repeats. One individual was heteroplasmic for length variants consisting of five and seven copies of the 79-bp tandem repeat. The sequence of the repeats is conducive to the formation of secondary structure. A termination-associated sequence is present in each of the repeats and in a unique sequence region 5' to the tandem array as well. Mean genetic distance between the masked shrew taxa and the pygmy shrew was calculated separately for the unique sequence region, one of the tandem repeats, the imperfect repeat, and these three regions combined. The unique sequence region evolved more rapidly than the tandem repeats or the imperfect repeat. The small genetic distance between pairs of tandem repeats within an individual is consistent with a model of concerted evolution. Repeats are apparently duplicated and lost at a high rate, which tends to homogenize the tandem array. The rate of D- loop sequence divergence between the masked and pygmy shrews is estimated to be 15%-20%/Myr, the highest rate observed in D-loops of mammals. Rapid sequence evolution in shrews may be due either to their high metabolic rate and short generation time or to the presence of variable numbers of tandem repeats.   相似文献   

3.

Background

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.

Results

Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.

Conclusions

While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.  相似文献   

4.
Recent studies have shown the non-random distribution of microsatellite motifs between genomic regions within a particular species. This study investigates such microsatellite distributions in the genome of the economically important abalone Haliotis midae, via a bioinformatic survey. In particular, the association of specific repeat motifs to coding regions and transposable elements is investigated. An understanding of microsatellite genomic distribution will facilitate more efficient use and development of this popular molecular marker. A bias toward di- and tetranucleotide repeats was found in the H. midae genome. CA microsatellite units were the most abundant repeat motif, but were notably underrepresented in genic regions where GAGT repeats predominate. Approximately 17.5% and 21% of the microsatellites showed gene and/or transposable element associations, respectively. This could explain the high genomic frequencies of particular motifs across the genome and may allude to a possible functional role. The data presented in this study are the first to demonstrate such non-random dispersal of microsatellites in abalone and support previous findings arguing in favor of non-random distribution of repeat motifs.  相似文献   

5.
This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.  相似文献   

6.
We isolated clones and determined the sequence of portions of mouse and human cellular DNA which cross-hybridize strongly with the IR3 repetitive region of Epstein-Barr virus. The sequences were found to be tandem arrays of a simple sequence based on the triplet GGA, very similar to the IR3 repeat. The cellular repeats have distinct differences from the viral repeat region, however, and their sequences do not appear capable of being translated into a purely glycine-plus-alanine protein domain like the portion of the Epstein-Barr nuclear antigen coded by IR3. Although the relationship between IR3 and the cellular repeats is left unclear, the cellular repeats have many interesting features. The tandem arrays are about 1 to several kilobases long, much shorter than satellite tandem repeats and larger than other interspersed, tandem repeats. Each of the repeats is a distinct variation, perhaps diverged from a common sequence, (GGA)n. This family is present in the genomes of all species tested and appears to be a ubiquitous feature of all higher eucaryotic genomes.  相似文献   

7.
串联重复序列的物种差异及其生物功能   总被引:13,自引:0,他引:13  
高焕  孔杰 《动物学研究》2005,26(5):555-564
串联重复序列是指1-200个碱基左右的核心重复单位,以头尾相串联的方式重复多次所组成的重 复序列。它广泛存在于真核生物和一些原核生物的基因组中,并表现出种属、碱基组成等的特异性。在基因组 整体水平上,各种优势的重复序列类型不同。即使在同一重复序列类型内部,不同重复拷贝类别(如AT、AC 等)在基因组中的存在也表现出很大的差异。同时,这些重复序列类型和各重复拷贝类别在同一物种的不同染 色体间,以及基因的编码区和非编码区间也表现种属和碱基组成差异。这些差异显示了重复序列起源和进化的 复杂性,可能涉及到多种机制和因素,并与生物功能密切相关。另外,由于重复序列分析软件和统计标准还存 在算法、重复长度、完美性等问题,需要进一步探讨。此外,串联重复序列的自身进化关系、全基因组水平上 的进化地位、在基因组中的生物功能、重复序列数据库建立和应用研究等,将是今后研究的主要课题。  相似文献   

8.
Whole genome comparison has revealed the presence of short sequence repeats (also called mycobacterial interspersed repeat units and variable number tandem repeat units) used for genotyping schemes. In this study, we have used deletion analysis, single nucleotide polymorphism data and spoligotype taken from published data from others to investigate the evolution of selected repeats that form the common denominators of the majority of established schemes. Analysis of the number of repeats per locus from over 400 isolates revealed that the general trend globally appears to be loss of repeats in modern strains compared with ancestral strains.  相似文献   

9.
Cheng ZJ  Murata M 《Genetics》2003,164(2):665-672
From a wild diploid species that is a relative of wheat, Aegilops speltoides, a 301-bp repeat containing 16 copies of a CAA microsatellite was isolated. Southern blot and fluorescence in situ hybridization revealed that approximately 250 bp of the sequence is tandemly arrayed at the centromere regions of A- and B-genome chromosomes of common wheat and rye chromosomes. Although the DNA sequence of this 250-bp repeat showed no notable homology in the databases, the flanking or intervening sequences between the repeats showed high homologies (>82%) to two separate sequences of the gag gene and its upstream region in cereba, a Ty3/gypsy-like retroelement of Hordeum vulgare. Since the amino acid sequence deduced from the 250 bp with seven CAAs showed some similarity ( approximately 53%) to that of the gag gene, we concluded that the 250-bp repeats had also originated from the cereba-like retroelements in diploid wheat such as Ae. speltoides and had formed tandem arrays, whereas the 300-bp repeats were dispersed as a part of cereba-like retroelements. This suggests that some tandem repeats localized at the centromeric regions of cereals and other plant species originated from parts of retrotransposons.  相似文献   

10.
We describe an unusual repetitive DNA region located in the 3′ end of the light (L)-strand in the mitochondrial control region of two elephant seal species. The array of tandem repeats shows both VNTR (variable-number tandem repeat) and sequence variation and is absent from 12 compared mammalian species, except for the occurrence in the same location of a distinct repetitive region in rabbit mtDNA and a similar repeat in the harbor seal. The sequence composition and arrangement of the repeats differ considerably between the northern elephant seal (Mirounga angustirostris) and the southern species (M. leonina) despite an estimated divergence time of 1 MY (based on an mtDNA-RNA gene and the nonrepetitive control region). Analysis of repeat sequence relationships within and between species indicate that divergence in sequence and structure of repeats has involved both slippagelike and unequal crossingover processes of turnover, generating very high levels of divergence and heteroplasmy. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

11.

Background

Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species.

Results

The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure.

Conclusions

The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.  相似文献   

12.
We have determined the nucleotide sequence of a region of DNA derived from the end of one chromosome of the yeast, Saccharomyces cerevisiae. Inspection of the sequence reveals the presence of 12 tandem direct repeats, each 36 nucleotides long and having nearly identical sequence. Each 36 base-pair repeat can be further subdivided into three tandem sub-repeats of a similar 12 base-pair sequence. Analysis of total genomic yeast DNA from several strains by Southern hybridization suggests that the number of tandem 36 base-pair repeat units may vary from approximately 8 to 25 among different telomeric regions. Differences in the number of repeats may have arisen by unequal crossing over between them. Furthermore, the finding that the pattern of bases at multiple variable positions within the repeat unit is not random suggests that these regions may undergo gene conversion events that render them homogeneous.  相似文献   

13.
Mutation patterns of amino acid tandem repeats in the human proteome   总被引:1,自引:0,他引:1  

Background

Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).

Results

We identified 137 polymorphic variants in 115 different amino acid tandem repeats. Of these, 77 contained amino acid substitutions and 60 contained gaps (expansions or contractions of the repeat unit). The analysis showed that at least about 21% of the repeats might be polymorphic in humans. We compared the mutations found in different types of amino acid repeats and in adjacent regions. Overall, repeats showed a five-fold increase in the number of gap mutations compared to adjacent regions, reflecting the action of slippage within the repetitive structures. Gap and substitution mutations were very differently distributed between different amino acid repeat types. Among repeats containing gap variants we identified several disease and candidate disease genes.

Conclusion

This is the first report at a genome-wide scale of the types of mutations occurring in the amino acid repeat component of the human proteome. We show that the mutational dynamics of different amino acid repeat types are very diverse. We provide a list of loci with highly variable repeat structures, some of which may be potentially involved in disease.  相似文献   

14.
The remarkable responsiveness of dog morphology to selection is a testament to the mutability of mammals. The genetic sources of this morphological variation are largely unknown, but some portion is due to tandem repeat length variation in genes involved in development. Previous analysis of tandem repeats in coding regions of developmental genes revealed fewer interruptions in repeat sequences in dogs than in the orthologous repeats in humans, as well as higher levels of polymorphism, but the fragmentary nature of the available dog genome sequence thwarted attempts to distinguish between locus-specific and genome-wide origins of this disparity. Using whole-genome analyses of the human and recently completed dog genomes, we show that dogs possess a genome-wide increase in the basal germ-line slippage mutation rate. Building on the approach that gave rise to the initial observation in dogs, we sequenced 55 coding repeat regions in 42 species representing 10 major carnivore clades and found that a genome-wide elevated slippage mutation rate is a derived character shared by diverse wild canids, distinguishing them from other Carnivora. A similarly heightened slippage profile was also detected in rodents, another taxon exhibiting high diversity and rapid evolvability. The correlation of enhanced slippage rates with major evolutionary radiations suggests that the possession of a "slippery" genome may bestow on some taxa greater potential for rapid evolutionary change.  相似文献   

15.
This study shows for the first time that the tandemly repeated icosapeptide of human MUC1 underlies a genetic sequence polymorphism at three positions (underlined): PDTRPAPGSTAPPAHGVTSA. The concerted replacement DT-->ES (sequence variation 1) and the single replacements P-->Q (sequence variation 2), P-->A (sequence variation 3), and P-->T (sequence variation 4) were identified by sequencing of polymerase chain reaction products and studied by minisatellite variant repeat analysis for their incidence and topology in the 5' and 3' peripheral regions of the variable number of tandem repeats domain. Minisatellite variant repeat analyses were performed with 27 individual samples of genomic DNA from human cells and tissues covering 30-60% of the domain. Within the peripheral regions, sequence variations 1-4 occur at high incidence and show a nearly constant repeat topology in all individual normal and tumor samples. Also, individuals who were non-Caucasian or of different ethnic background were found to have the same set of replacements with identical topology. The repeat variant 1 replacing the established tumor target motif DTR with ESR was found in all individuals and appears predominantly in repeat clusters (diads and triads). The largely constant topology of variant repeats is interpreted by the assumption that the variable number of tandem repeats domain has evolved as a recent expansion of sequence variable super-repeats.  相似文献   

16.
Human mammary cells present on the cell surface a polymorphic epithelial mucin (PEM) which is developmentally regulated and aberrantly expressed in tumors. PEM carries tumor-associated epitopes recognized by the monoclonal antibodies HMFG-1, HMFG-2, and SM-3. Previously isolated partial cDNA clones revealed that the core protein contained a large domain consisting of variable numbers of 20-amino acid repeat units. We now report the full sequence for PEM, as deduced from cDNA sequences. The encoded protein consists of three distinct regions: the amino terminus consisting of a putative signal peptide and degenerate repeats; the major portion of the protein which is the tandem repeat region; the carboxyl terminus consisting of degenerate tandem repeats and a unique sequence containing a transmembrane sequence and a cytoplasmic tail. Potential O-glycosylation sites (serines or threonines) make up more than one-fourth of the amino acids. Length variations in the tandem repeat result in PEM being an expressed variable number tandem repeat locus. Tandem repeats appear to be a general characteristic of mucin core proteins.  相似文献   

17.
Triplets of the form of purine, purine, pyrimidine (RRY(i)) are enhanced in frequency in the genomes of primates, rodents, and bacteria. Some RRY(i) are "cryptic" repeats (cRRY(i)) in which no one tandem run of a trinucleotide predominates. A search of human GenBank sequence revealed that the sequences of cRRY(i) are highly nonrandom. Three randomly chosen human cRRY(i) were sequenced in search of polymorphic alleles. Multiple polymorphic alleles were found in cRRY(i) in the coding regions of the genes for proopiomelanocortin (POMC) and TATA-binding protein (TBP). The highly polymorphic TBP cRRY(i) was characterized in detail. Direct sequencing of 157 unrelated human alleles demonstrated the presence of 20 different alleles which resulted in 29-40 consecutive glutamines in the amino-terminal region of TBP. These alleles are differentially distributed among the races. PCR was used to screen 1,846 additional alleles in order to characterize more fully the range of variation in the population. Three additional alleles were discovered, but there was no example of a substantial sequence amplification as is seen in the repeat sequences associated with X-linked spinal and bulbar muscular atrophy, myotonic dystrophy, or the fragile-X syndrome. The structure of the TBP cRRY(i) is conserved in the five monkey species examined. In the chimpanzee, examination of four individuals revealed that the cRRY(i) was highly polymorphic, but the pattern of polymorphism differed from that in humans. The TBP cRRY(i) displays both similarities with and differences from the previously described RRY(i) in the coding sequence of the androgen receptor. Our data suggest how simple tandem repeats could evolve from cryptic repeats.  相似文献   

18.

Background

Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal.

Methodology and Principal Findings

Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements.

Significance

Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.  相似文献   

19.
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175–185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.  相似文献   

20.
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号