首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.  相似文献   

2.
3.
We have created a system that utilizes the FLP recombinase of Saccharomyces cerevisiae to reversibly introduce exogenous cloned DNA at defined locations into the Candida albicans genome. Recombination target (FRT) sites and the FLP gene can be introduced permanently at defined locations using homologous recombination. FLP recombinase is provided as needed through the regulated expression of its gene using the MAL2 promoter. Exogenous DNA is introduced on a cloning vector that is unable to replicate in C. albicans, and contains an FRT site and a selectable marker (URA3). Transformation by the lithium acetate or electroporation procedure is sufficient to obtain site-specific integration. This system permits rapid and precise excision of the introduced DNA when needed. It should facilitate studies on C. albicans genome structure and function, simplifying a wide range of chromosomal cloning applications, and generally enhancing the utility of C. albicans as a model organism for the study of fungal pathogenicity.  相似文献   

4.
5.
6.
W S Chu  B B Magee    P T Magee 《Journal of bacteriology》1993,175(20):6637-6651
The opportunistic fungal pathogen, Candida albicans, is diploid as usually isolated and has no apparent sexual cycle. Genetic analysis has therefore been very difficult. Molecular genetics has yielded important information in the past few years, but it too is hampered by the lack of a good genetic map. Using the well-characterized strain 1006 and strain WO-1, which undergoes the white-opaque phenotypic transition, we have developed a genomic restriction map of C. albicans with the enzyme SfiI. There are approximately 34 SfiI restriction sites in the C. albicans genome. Restriction fragments were separated by pulsed-field electrophoresis and were assigned to chromosomes by hybridization of complete and partial digests with known chromosome-specific probes as well as by digestion of isolated chromosomes. Telomeric fragments were identified by hybridization with a telomere-specific probe (C. Sadhu, M.J. McEachern, E.P. Rustchenko-Bulgac, J. Schmid, D.R. Soll, and J.B. Hicks, J. Bacteriol. 173:842-850, 1991). WO-1 differs from 1006 in that it has undergone three reciprocal chromosomal translocations. Analysis of the translocation products indicates that each translocation has occurred at or near an SfiI site; thus, the SfiI fragments from the two strains are similar or identical. The tendency for translocation to occur at or near SfiI sites may be related to the repeated sequence RPS 1, which contains four such sites and could provide homology for ectopic pairing and crossing over. The genome size of both strains is about 16 to 17 megabases, in good agreement with previous determinations.  相似文献   

7.
By using orthogonal-field alternating gel electrophoresis (OFAGE), field-inversion gel electrophoresis (FIGE), and contour-clamped homogeneous field gel electrophoresis (CHEF), we have clearly resolved 11 chromosomal bands from various Candida albicans strains. OFAGE resolves the smaller chromosomes better, while FIGE, which under our conditions causes the chromosomes to run in the reverse order of OFAGE, is more effective in separating the larger chromosomes. CHEF separates all chromosomes under some conditions, but these conditions do not often resolve homologs. The strains examined are highly polymorphic for chromosome size. Fourteen cloned Candida genes, isolated on the basis of conferral of new properties to or complementation of auxotrophic deficiencies in Saccharomyces cerevisiae, and three sequences of unknown function have been hybridized to Southern transfers of CHEF, FIGE, and OFAGE gels. Four sets of resolvable bands have been shown to be homologous chromosomes. On the basis of these data, we suggest that C. albicans has seven chromosomes. Genes have been assigned to the seven chromosomes. Two chromosomes identified genetically have been located on the electrophoretic karyotype.  相似文献   

8.
Previous analyses of diploid nuclear genotypes have concluded that recombination has occurred in populations of the yeast Candida albicans. To address the possibilities of clonality and recombination in an effectively haploid genome, we sequenced seven regions of mitochondrial DNA (mtDNA) in 45 strains of C. albicans from human immunodeficiency virus-positive patients in Toronto, Canada, and 3 standard reference isolates of C. albicans, CA, CAI4, and WO-1. Among a total of 2,553 nucleotides in the seven regions, 62 polymorphic nucleotide sites and seven indels defined nine distinct mtDNA haplotypes among the 48 strains. Five of these haplotypes occurred in more than one strain, indicating clonal proliferation of mtDNA. Phylogenetic analysis of mtDNA haplotypes resulted in one most-parsimonious tree. Most of the nucleotide sites undergoing parallel change in this tree were clustered in blocks that corresponded to sequenced regions. Because of the existence of these blocks, the apparent homoplasy can be attributed to infrequent, past genetic exchange and recombination between individuals and cannot be attributed to parallel mutation. Among strains sharing the same mtDNA haplotypes, multilocus nuclear genotypes were more similar than expected from a random comparison of nuclear DNA genotypes, suggesting that clonal proliferation of the mitochondrial genome was accompanied by clonal proliferation of the nuclear genome.  相似文献   

9.
Summary Using field-inversion gel electrophoresis we defined an electrophoretic karyotype for the yeast, Candida albicans. The karyotype is distinct from other species of Candida and is species specific. A total of five distinct chromosomal mobility groups were observed, at least four of which are composed of a minimum of two fragments each. From the apparent sizes of these fragments relative to the large chromosomes of the morphologically related yeast Saccharomyces cerevisiae, together with the known genome size of this organism, we conclude that the karyotype is the result of the migration of intact chromosomes.  相似文献   

10.
After almost a decade of work, the sequencing, assembly, and annotation of the genome of the fungal pathogen Candida albicans is finally close at hand. This review covers the early history of the C. albicans genome project, from the release of early assemblies that provided the impetus for an explosion in functional genomics research, to a community-based annotation and a preview of the work that was necessary for the production of a final genome assembly.  相似文献   

11.
The uptake of pyrimidines and their derivatives into Candida glabrata and Candida albicans was measured using a novel technique in which the cells were rapidly separated from their suspending medium by centrifugation through a layer of an inert oil. The uptake of [14C]cytosine was linear for 30 s for all concentrations of pyrimidine tested. In C. glabrata but not C. albicans cytosine transport was mediated by both a high affinity (Km 0.8 +/- 0.1 microM), low capacity [V 40 +/- 4 pmol (microliters cell water)-1 s-1] and a low affinity [Km 240 +/- 35 microM], high capacity system [V 770 +/- 170 pmol (microliters cell water)-1 s-1]. The cytosine permease in C. glabrata was specific for cytosine and 5-fluorocytosine. In C. albicans there was only one cytosine transport system [Km 2.4 +/- 0.3 microM; V 50 +/- 4 pmol (microliters cell water)-1 s-1]; this system also transported adenine, guanine and hypoxanthine. Differences in nucleoside transport were also observed for C. glabrata and C. albicans, with the uridine permease in C. glabrata transporting only uridine and 5-fluorouridine whereas cytidine and adenosine were also transported by the uridine permease in C. albicans. Studies on the effect of nucleoside analogues on uridine transport in C. glabrata demonstrated the importance of the sugar moiety in determining the specificity of transport, with a hydroxyl residue on C-2 being apparently essential for transport.  相似文献   

12.
Clinical strains of Candida albicans are highly tolerant of aneuploidies and other genome rearrangements. We have used comparative genome hybridization (CGH), in an array format, to analyse the copy number of over 6000 open reading frames (ORFs) in the genomic DNA of C. albicans laboratory strains carrying one (CAI-4) to three (BWP17) auxotrophies. We find that during disruption of the HIS1 locus all genes telomeric to HIS1 were deleted and telomeric repeats were added to a 9 nt sequence within the transforming DNA. This deletion occurred in approximately 10% of transformants analysed and was stably maintained through two additional rounds of transformation and counterselection of the transformation marker. In one example, the deletion was repaired, apparently via break-induced replication. Furthermore, all CAI-4 strains tested were trisomic for chromosome 2 although this trisomy appears to be unstable, as it is not detected in strains subsequently derived from CAI-4. Our data indicate CGH arrays can be used to detect monosomies and trisomies, to predict the sites of chromosome breaks, and to identify chromosomal aberrations that have not been detected with other approaches in C. albicans strains. Furthermore, they highlight the high level of genome instability in C. albicans laboratory strains exposed to the stress of transformation and counterselection on 5-fluoro-orotic acid.  相似文献   

13.
Summary Subcultures ofC. albicans, made from Sabouraud agar, grown at room temperature for 48 hours, were inoculated into a 10 times saline dilution of Sabouraud liquid medium and left in the incubator for 45–60 minutes at 37° C, transferred to corn meal agar plates and incubated at 37° C for 18–24 hours.Small portions of the surface agar containing the yeasts from these plates were pressed under cover glasses and examined under the oil immersion lens.Under these conditions,C. albicans cultures were observed to produce only yeast-like cells, whereasC. stellatoidea cultures contained predominantly abundant, long, thin mycelia.  相似文献   

14.

Background

Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved.

Results

We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans.

Conclusions

The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution.  相似文献   

15.
The mitochondrial DNA (mtDNA) of the dimorphic fungus Candida albicans has a molecular size of 41 kilobase pairs as judged by summation of the fragment sizes produced by digestion with restriction endonucleases EcoRI, PvuII, and a combination of both enzymes. Five of the six EcoRI fragments comprising the mitochondrial genome have been cloned into the plasmid vector, pBR322. Restriction mapping revealed a circular map as predicted by previous observations with the electron microscope. The use of nick-translated, purified mtDNA to probe digests of mtDNA from other strains of C. albicans revealed a common restriction pattern. Use of nick-translated, cloned EcoRI fragments to probe digests of mtDNA revealed a large (at least 5 kilobase pairs), inverted duplication as well as a smaller (less than 0.4 kilobase pairs) region of related sequences.  相似文献   

16.
17.
Granger BL 《Eukaryotic cell》2012,11(6):795-805
Ywp1 is a prominent glycosylphosphatidylinositol (GPI)-anchored glycoprotein of the cell wall of Candida albicans; it is present in the yeast form of this opportunistic fungal pathogen but absent from filamentous forms and chlamydospores. Yeast cells that lack Ywp1 are more adhesive and form thicker biofilms, implying an antiadhesive activity for Ywp1, with a possible role in yeast dispersal. The antiadhesive effect of Ywp1 is transplantable from yeast to hyphae, as hyphae that are forced to express YWP1 lose adhesion in an in vitro assay. Deletion of the GPI anchor results in loss of Ywp1 to the surrounding medium and reduction of the antiadhesive effect, implying an importance of time-dependent residency in the cell wall. Anchor-negative versions of Ywp1 possessing or lacking a C-terminal green fluorescent protein (GFP) tag were created in C. albicans and harvested from culture supernatants; in addition to serving as quantifiable markers for Ywp1 secretion, they revealed that the cleaved 11-kDa propeptide of Ywp1 remains strongly but noncovalently associated with the Ywp1 core. This association is resistant to highly acidic and basic solutions, 8 M urea, and 1% SDS (below 45°C). Above 50°C, SDS dissociates the isolated complex, but even higher temperatures are required to dissociate the propeptide from native Ywp1 that is anchored in a cell wall. This property has permitted detection, for the first time, of orthologs of Ywp1 in other members of the Candida clade. The cleaved propeptide, which carries the sole N-glycan of Ywp1, must participate in the antiadhesive effect of Ywp1.  相似文献   

18.
白色念珠菌拮抗菌株的筛选   总被引:3,自引:1,他引:3  
目的筛选对白色念珠菌具有明显拮抗作用的菌株.方法通过纸片琼脂扩散法(K-B法)观察各菌株对白色念珠菌的拮抗作用;再利用试管法观察有拮抗作用菌株对白色念珠菌的抑菌效果.结果 K-B法表明大肠埃希菌、甲型链球菌和卡他球菌对白色念珠菌无抑菌作用,表皮葡萄球菌、微球菌有抑菌作用,但抑菌环小;枯草杆菌有明显抑菌作用.试管法表明表皮葡萄球菌和枯草杆菌对白色念珠菌均有生物拮抗作用,其抑菌率分别为97%和89.7%.结论枯草杆菌是白色念珠菌的理想拮抗菌株.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号