首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Konno T  Uchibori T  Nagai A  Kogi K  Nakahata N 《Life sciences》2007,80(12):1115-1122
Previously, we reported that a relatively selective adenosine A(2A) receptor agonist 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) elicited ocular hypotension in rabbits (Journal of Pharmacological Sciences 2005;97:501-509). In the present study, we investigated the effect of 2-CN-Ado on ocular blood flow in rabbit eyes. An intravitreal injection of 2-CN-Ado increased ocular blood flow, measured by a non-contact laser flowmeter. 2-CN-Ado-induced increase in ocular blood flow was accompanied with the retinal vasodilation. The increase in ocular blood flow was inhibited by an adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, but not by an adenosine A(2B) receptor antagonist alloxazine or an adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The repetitive applications of topical 2-CN-Ado twice a day for 7 days produced a persistent increase in ocular blood flow with ocular hypotension. These results suggest that 2-CN-Ado increases the ocular blood flow mainly via adenosine A(2A) receptor, and that the topical application of 2-CN-Ado for several days not only increases the ocular blood flow but also prolong ocular hypotension, indicating that 2-CN-Ado may be a useful lead compound for the treatment of ischemic retinal diseases such as glaucoma.  相似文献   

2.
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein.  相似文献   

3.
Chronic administration of caffeine to mice (1 mg/ml in drinking water X 14 d) led to a downward shift in the dose-response curve for the locomotor effects of caffeine. Caffeine was also less effective as an antagonist against (-)-(N6-phenylisopropyl)-adenosine (PIA)-induced analgesia in the tail flick assay in these animals. The dose-response curves of PIA for both analgesia and locomotor depression were shifted to the left in animals chronically administered caffeine. In mice chronically administered PIA (1 mg/kg/d X 14 d), the dose-response curves of PIA for both analgesia and locomotor depression were shifted to the right. The dose-response curve for the locomotor effects of caffeine was shifted to the left, and caffeine exhibited greater antagonist activity against the analgesic action of PIA in these animals. There was no change in the Kd or Bmax values of either 3H-PIA or 3H-diethylphenylxanthine (DPX, a potent adenosine receptor antagonist) in mice chronically administered PIA. The Bmax values for both 3H-PIA and 3H-DPX were significantly increased, while the Kd values were not changed in mice chronically administered caffeine. There was no detectable change in the brain levels of either PIA or caffeine in animals chronically treated with either drug. The results demonstrate that chronic administration of caffeine increases the sensitivity of mice to the actions of PIA and vice versa, providing supportive evidence for the interaction of these drugs at the same receptor, which is probably an adenosine receptor.  相似文献   

4.
Abstract

Certain relatively large 2-(ar)alkoxy substituents selectively raise the agonist potency of adenosine at the A2 receptor of coronary artery while lowering activity at the A1 receptor of AV node.  相似文献   

5.
6.
M C Olianas  P Onali 《Life sciences》1990,46(8):591-598
We investigated the effect of the relatively selective A1 adenosine receptor agonist N6-(R)-phenylisopropyladenosine (R-PIA) on tyrosine hydroxylase activity (TH) of synaptosomes obtained from rat striatum. TH activity was assayed in supernatant obtained following sonication and centrifugation of the tissue preincubated with the test compounds. R-PIA produced a modest decrease of basal enzyme activity, but significantly reduced the activation of the enzyme by submaximal (0.1-0.5 microM) concentrations of forskolin (FSK) a stimulator of adenylate cyclase. The IC 50 value of R-PIA was 17 nM and the maximal inhibition corresponded to 30-40% decrease of the enzyme activity stimulated by FSK. The S-isomer of PIA failed to affect TH activity under control and stimulated conditions. Moreover, the inhibitory effect of R-PIA was completely antagonized by 8-cyclopentyl- 1,3 -dimethylxanthine, an adenosine receptor blocker. R-PIA inhibited both basal and FSK-stimulated adenylate cyclase activity. These results indicate that in striatal dopaminergic terminals TH activity can be modulated in an inhibitory manner by activation of presynaptic A1 adenosine receptors.  相似文献   

7.
The development of potent and selective adenosine receptor ligands as potential drugs is an active area of research. Xanthines are one of the most important classes of adenosine receptor antagonists and have been widely developed in terms of affinity and selectivity for adenosine receptors. We recently developed new original pathways for the synthesis of xanthine analogues starting from 5-substituted-2-amino-2-oxazoline 5 as a synthon. These procedures allowed us to selectively introduce a large, functionalized and beta-adrenergic 2-hydroxy-3-phenoxypropyl pharmacophore at the 1- and 3-position of the xanthine moiety which allowed further structural modifications. In this study, we present a new synthetic access to racemic xanthine derivatives 1-4 from 5, and their evaluation as adenosine A1, A2A and A3 receptor ligands in radioligand binding studies. The 2-hydroxy-3-phenoxypropyl moiety was well tolerated in the 3-position of the xanthine core, while its introduction in the 1-position of the xanthine moiety led to a large decrease in adenosine receptor affinity. 1,7-Dimethyl-3-[1-(2-chloro-3-phenoxypropyl)]-8-(3,4,5-trimethoxystyryl)xanthine (2n) was the most potent and selective A2A antagonist of the present series (Ki=44 nM, >200-fold selective vs A1). 1-Propyl-3-[1-(2-hydroxy-3-phenoxypropyl)]-8-noradamantylxanthine (3f) was identified as a potent (KiA1=21 nM) and highly selective (>350-fold vs A2A and A3 receptor) adenosine A1 receptor antagonist.  相似文献   

8.
In recent studies performed in our laboratory we have shown that acute administration of (-)-linalool, the natural occurring enantiomer in essential oils, possesses anti-inflammatory, antihyperalgesic and antinociceptive effects in different animal models. The antihyperalgesic and antinociceptive effects of (-)-linalool have been ascribed to its capacity in stimulating the opioidergic, cholinergic and dopaminergic systems, as well as to its interaction with K+ channels, or to its local anaesthetic activity and/or to the negative modulation of glutamate transmission. Activation of A1 or A2A receptors has been shown to induce antinociceptive effects, and the possible involvement of adenosine in (-)-linalool antinociceptive effect, has not been elucidated yet. Therefore, in the present study, we have investigated the effects of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 receptor antagonist and the effects of 3,7-dimethyl-1-propargilxanthine (DMPX), a selective adenosine A2A receptor antagonist on the antinociception of (-)-linalool in mice, measured in the hot-plate test. Both DPCPX (0.1 mg/kg; i.p.) and DMPX (0.1 mg/kg; i.p.) pre-treatment significantly depressed the antinociceptive effect of (-)-linalool at the highest doses tested. These findings demonstrated that the effect of (-)-linalool on pain responses is, at least partially, mediated by the activity of adenosine A1 and A2A receptors.  相似文献   

9.
Structure-activity relationships have been investigated through substitutions at the 9-position of the 2-amino-6-(2-furanyl) purine (5) to identify novel and selective A(2A) adenosine receptor antagonists. Several potent and selective antagonists were identified. In particular, compounds 20, 25, and 26 show very high affinity with excellent selectivity.  相似文献   

10.
11.
The impact of age on functional sensitivity to A(1)-adenosine receptor activation was studied in Langendorff-perfused hearts from young (1-2 mo) and old (12-18 mo) male Wistar rats. Adenosine mediated bradycardia in young and old hearts, with sensitivity enhanced approximately 10-fold in old [negative logarithm of EC(50) (pEC(50)) = 4.56 +/- 0.11] versus young hearts (pEC(50) = 3.70 +/- 0. 09). Alternatively, the nonmetabolized A(1) agonists N(6)-cyclohexyladenosine and (R)-N(6)-phenylisopropyladenosine were equipotent in young (pEC(50) = 7.43 +/- 0.12 and 6.61 +/- 0.19, respectively) and old hearts (pEC(50) = 7.07 +/- 0.10 and 6.80 +/- 0. 11, respectively), suggesting a role for uptake and/or catabolism in age-related changes in adenosine sensitivity. In support of this suggestion, [(3)H]-adenosine uptake was approximately twofold greater in young than in old hearts (from 3-100 microM adenosine). However, although inhibition of adenosine deaminase and adenosine transport with 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride and 10 microM S-(4-nitrobenzyl)-6-thioinosine increased adenosine sensitivity three- to fourfold, it failed to abolish the sensitivity difference in old (pEC(50) = 4.95 +/- 0.08) versus young (pEC(50) = 4.29 +/- 0.13) hearts. Data indicate that 1) age increases functional A(1) receptor sensitivity to adenosine without altering the sensitivity of the A(1) receptor itself, and 2) age impairs adenosine transport and/or catabolism, but this does not explain differing functional sensitivity to adenosine. This increased functional sensitivity to adenosine may have physiological significance in the older heart.  相似文献   

12.
13.
CD26 or dipeptidyl-peptidase IV (DPPIV) is engaged in immune functions by co-stimulatory effects on activation and proliferation of T lymphocytes, binding to adenosine deaminase, and regulation of various chemokines and cytokines. DPPIV peptidase activity is inhibited by both Tat protein from human immunodeficiency virus (HIV)-1 and its N-terminal nonapeptide Tat-(1-9) with amino acid sequence MDPVDPNIE, suggesting that DPPIV mediates immunosuppressive effects of Tat protein. The 2.0- and 3.15-A resolution crystal structures of the binary complex between human DPPIV and nonapeptide Tat-(1-9) and the ternary complex between the variant MWPVDPNIE, called Trp(2)-Tat-(1-9), and DPPIV bound to adenosine deaminase show that Tat-(1-9) and Trp(2)-Tat-(1-9) are located in the active site of DPPIV. The interaction pattern of DPPIV with Trp(2)-Tat-(1-9) is tighter than that with Tat-(1-9), in agreement with inhibition constants (K(i)) of 2 x 10(-6) and 250 x 10(-6) m, respectively. Both peptides cannot be cleaved by DPPIV because the binding pockets of the N-terminal 2 residues are interchanged compared with natural substrates: the N-terminal methionine occupies the hydrophobic S1 pocket of DPPIV that normally accounts for substrate specificity by binding the penultimate residue. Because the N-terminal sequence of the thromboxane A2 receptor resembles the Trp(2)-Tat-(1-9) peptide, a possible interaction with DPPIV is postulated.  相似文献   

14.
15.
Abstract

In this paper we report general and highly efficient synthetic routes to certain C2,N6-disubstituted adenosines including an efficient synthesis of 2-(phenylamino)adenosine [CV-1808, a highly A2 receptor selective adenosine agonist] originally developed as an antianginal agent.  相似文献   

16.
During the search for second-generation adenosine A(1) receptor antagonist alternatives to the clinical candidate 8-(3-oxa-tricyclo[3.2.1.0(2,4)]oct-6-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione (BG9719), we developed a series of novel xanthines substituted with norbornyl-lactones that possessed high binding affinities for adenosine A(1) receptors and in vivo activity.  相似文献   

17.
Activated cardiac adenosine A(1) receptors translocate out of caveolae   总被引:6,自引:0,他引:6  
The cardiac affects of the purine nucleoside, adenosine, are well known. Adenosine increases coronary blood flow, exerts direct negative chronotropic and dromotropic effects, and exerts indirect anti-adrenergic effects. These effects of adenosine are mediated via the activation of specific G protein-coupled receptors. There is increasing evidence that caveolae play a role in the compartmentalization of receptors and second messengers in the vicinity of the plasma membrane. Several reports demonstrate that G protein-coupled receptors redistribute to caveolae in response to receptor occupation. In this study, we tested the hypothesis that adenosine A(1) receptors would translocate to caveolae in the presence of agonists. Surprisingly, in unstimulated rat cardiac ventricular myocytes, 67 +/- 5% of adenosine A(1) receptors were isolated with caveolae. However, incubation with the adenosine A(1) receptor agonist 2-chlorocyclopentyladenosine induced the rapid translocation of the A(1) receptors from caveolae into non-caveolae plasma membrane, an effect that was blocked by the adenosine A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. An adenosine A(2a) receptor agonist did not alter the localization of A(1) receptors to caveolae. These data suggest that the translocation of A(1) receptors out of caveolae and away from compartmentalized signaling molecules may explain why activation of ventricular myocyte A(1) receptors are associated with few direct effects.  相似文献   

18.
The modulation of adenosine receptor with K+(ATP) channel blocker, glibenclamide, was investigated using the radiolabeled A2A-receptor selective agonist [3H]CGS 21680. Radioligand binding studies in bovine brain striatal membranes (BBM) indicated that unlabeled CGS 21680 displaced the bound [3H]CGS 21680 in a concentration-dependent manner with a maximum displacement being approximately 65% at 10(-4) M. In the presence of 10(-5) M glibenclamide, unlabeled CGS 21680 increased the displacement of bound [3H]CGS 21860 by approximately 28% at 10(-4) M. [3H]CGS 21680 bound to BBM in a saturable manner to a single binding site (Kd = 10.6+/-1.71 nM; Bmax = 221.4+/-6.43 fmol/mg of protein). In contrast, [3H]CGS 21680 showed saturable binding to two sites in the presence of 10(-5) M glibenclamide; (Kd = 1.3+/-0.22 nM; Bmax = 74.3+/-2.14 fmol/mg protein; and Kd = 8.9+/-0.64 nM; Bmax = 243.2+/-5.71 fmol/mg protein), indicating modulation of adenosine A2A receptors by glibenclamide. These studies suggest that the K+(ATP) channel blocker, glibenclamide, modulated the adenosine A2A receptor in such a manner that [3H]CGS 21680 alone recognizes a single affinity adenosine receptor, but that the interactions between K+(ATP) channels and adenosine receptors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号