首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Reassortant strains for modern live influenza vaccines are prepared using growing chicken embryos. It is very important to switch manufacture of influenza vaccines from chicken embryos to cell cultures, especially due to the threat of future pandemic, when there will be need of big quantities of vaccine for immunization of all age groups. Efficacy of production of reassortant strains with 6:2 vaccine formulation of genome (6 internal genes from the donor of attenuation and 2 genes coding external antigens--hemagglutinin and neuraminidase--from epidemic strain) in MDCK cell culture, using standard techniques employed for production of the vaccine in chicken embryos, was studied. It was shown that yield frequency of aforementioned reassortants of influenza A viruses did not exceed 5.7% whereas in chicken embryos vaccine 6:2 reassortants were isolated with frequency of 4%. For influenza B viruses, yield of 6:2 reassortants in growing chicken embryos exceeded 67% whereas in MDCK cell culture we were unable to produce clones with required genome composition. Thus, existing method while effective for production of vaccine reassortants in chicken embryos is low effective for isolation of 6:2 reassortants in MDCK cell culture. Fundamentally new techniques are needed for production of reassortant strains for live influenza vaccine in cell culture.  相似文献   

2.
Somatic cell nuclear transfer technology has been applied to produce live clones successfully in several mammalian species, but the success rates are very low. In mice, about half of the nuclear transfer embryos undergo implantation, but very few survive to term. We undertook detailed histological analyses of placentas from cloned mouse embryos generated from cumulus cells at 10.5 dpc of pregnancy, by which stage most clones have terminated their development. At 10.5 dpc, the extraembryonic tissues displayed several defined histological patterns, each reflecting their stage of developmental arrest. The most notable abnormality was the poor development of the spongiotrophoblast layer of diploid cells. This is in contrast to the placental hyperplasia frequently observed in somatic clones at 12.5 dpc or later stages. A variety of structural abnormalities were also observed in the embryos. Both placental and embryonic defects likely contribute to the low success rate of the mouse clones.  相似文献   

3.
ABSTRACT: BACKGROUND: Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a noninvasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. METHODS: Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. RESULTS: In total, 115 (24%) transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80%) and high negative predicting value (83%) but with a low positive predictive value (27%), a low specificity (31%) and low area under the ROC curve (0.56). The mean contact surface of embryos cultured in the single medium was significantly higher compared to the mean contact surface of embryos cultured in the sequential medium (p = 0.0003). CONCLUSIONS: Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.  相似文献   

4.
Cataract formation can be induced by glucocorticoid treatment of developing chick embryos. We show here that this response can be blocked very effectively by use of the antiglucocorticoid RU486. When dexamethasone (0.02 micromol/egg) was administered from day 13 to 16 chick embryos, their lenses (over 80%) became cataract (GC-induced cataract; stage IV-V) within 48 hrs. These GC-induced cataract formations were prevented by administration of RU486 (0.2 micromol/egg) on day 9. However, RU486 also inhibited hatching even though the embryos showed normal growth and appearance. In control embryos, more than 90% live chicks (39/42 chicks) were hatched on day 22. Chick embryos treated with RU486 on day 9 appeared to grow normally until 21, but could not hatch. When chick embryos were treated with RU486 (0.2 micromol/egg) on day 15, more than 80% live embryos (34/42 chicks) were hatched on day 23 with normal appearance, which was one day delay comparing to the control. These observations indicate that endogenous glucocorticoids are involved in the ability to hatch and that RU486 is able to block the actions of endogenous glucocorticoids. Thus, RU486 should be a very useful tool for studies on other biochemical and physiological aspects of chick embryo development that are under glucocorticoid control.  相似文献   

5.
The quality of oocytes and developing embryos are the most relevant factors determining the success of an in vitro fertilization (IVF) treatment. However, there are very few studies analyzing the effects of different gonadotrophin preparations on oocyte and embryo quality. A retrospective secondary analysis of data collected from a prospective randomized study was performed to compare highly purified versus recombinant follicle stimulating hormone (HP-FSH vs. rFSH). The main outcome measures were quantity and quality of oocytes and embryos, dynamics of embryo development, cryopreservation, clinical pregnancy and live birth rate. The number of retrieved and of mature (MII) oocytes showed no significant differences. Fertilization rate was significantly higher in the HP-FSH group (68.9% vs. 59.9%, p = 0.01). We also found significantly higher rate of cryopreserved embryos per all retrieved oocytes (23.4% vs. 14.5%, p = 0.002) in the HP-FSH group. There were no significant differences in clinical pregnancy and in live birth rates. Oocytes obtained with HP-FSH stimulation showed higher fertilisability, whereas pregnancy and live birth rates did not differ between the groups. However, patients treated with HP-FSH may benefit from the higher rate of embryos capable for cryopreservation, suggesting that cumulative pregnancy rates might be higher in this group.  相似文献   

6.
Epigenetic reprogramming: how now, cloned cow?   总被引:5,自引:0,他引:5  
DNA methylation patterns are dynamic in cleavage-stage embryos of a number of mammalian species. A failure to properly recapitulate preimplantation DNA methylation patterns in embryos derived by nuclear transfer may contribute to the low efficiency of nuclear transfer in producing live offspring.  相似文献   

7.
Nowshari MA  Brem G 《Theriogenology》1998,50(7):1001-1013
Experiments were conducted to develop a simple rapid-freezing protocol for expanded mouse blastocyst-stage embryos. The effect of type of cryoprotectant (ethylene glycol and propylene glycol) and its concentrations (4.5, 6.0 and 7.0 mol/L each with 0.5 mol/L sucrose) on morphological survival and development in vitro were studied. The survival and development of embryos frozen with best concentration of each cryoprotectant pre-exposed to either a low concentration (1.5 mol/L with 0.25 mol/L sucrose) of the respective cryoprotectant or ascending concentrations of sucrose were also compared. The in vivo development of embryos frozen with best protocol (pre-exposure to 1.5 mol followed by 7.0 mol ethylene glycol) was compared with nonfrozen embryos. The rate of re-expansion and hatching was influenced by the type and concentration of the cryoprotectant. A significantly higher re-expansion and hatching rate was achieved at 7.0 mol of both cryoprotectants compared with 4.5 and 6.0 mol of the respective cryoprotectants. When comparing 2 cryoprotectants, a higher (P < 0.05) rate of hatching was obtained with ethylene glycol at 7.0 mol compared with a similar concentration of propylene glycol. The highest re-expansion (91%) and hatching (86%) of expanded blastocysts was achieved with pre-exposure of embryos to a low concentration of ethylene glycol followed by freezing in the same cryoprotectant at 7.0 mol. The transfer of embryos frozen using this protocol resulted in the development of live fetuses. The proportion of live fetuses in the pregnant recipients with frozen-thawed embryos were not different from those transferred nonfrozen embryos (49 vs 57%). It may be concluded that simple rapid-freezing with dehydration in ascending sucrose concentrations or pre-equilibration in a low concentration of ethylene glycol or propylene glycol followed by exposure to the respective cryoprotectant at 7.0 mol resulted in high survival and development of expanded blastocysts. Ethylene glycol at 7.0 mol with pre-equilibration is, however, most effective for cryopreservation of this stage in the mouse.  相似文献   

8.
Daev EV 《Genetika》2003,39(10):1347-1352
The inhibiting effect of pheromone 2,5-dimethylpyrazine of house mouse females on the reproductive function of the CBA male mice was studied. The mutagenic effect of six-day pheromonal effect was assessed by dominant lethal test. Analysis for the frequency of dominant lethals showed that the pheromonal effect results in an increased death rate of the progeny of the treated males. This is probably explained by implantation failure and is expressed in a reduced average number of the implantation sites and low live embryos per female. The proportion of females with live embryos decreased significantly. The implication of the effect of female mouse pheromone 2,5-dimethylpyrazine on the genetic processes in germ cells of male mice is discussed.  相似文献   

9.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

10.
We cultured eight-cell mouse embryos to blastocyst stage, divided them into three groups according to the time of blastocoel formation, and transferred them separately into recipients. The proportion of live young from the fast-developing embryos was slightly high (49%) but not significantly different from those of other embryos (38% and 39%). However, the sex ratio of live young from the fast- and slow-developing embryos was significantly shifted toward the male (71%) and to the female (80%), respectively.  相似文献   

11.
Embryo production by ovum pick up from live donors   总被引:7,自引:0,他引:7  
Embryo production by in vitro techniques has increased steadily over the years. For cattle where this technology is more advanced and is applied more, the number of in vitro produced embryos transferred to final recipients was over 30,000 in 1998. An increasing proportion of in vitro produced embryos are coming from oocytes collected from live donors by ultrasound-guided follicular aspiration (ovum pick up, OPU). This procedure allows the repeated production of embryos from live donors of particular value and is a serious alternative to superovulation. Ovum pick up is a very flexible technique. It can be performed twice a week for many weeks without side effects on the donor's reproductive career. The donor can be in almost any physiological status and still be suitable for oocyte recovery. A scanner with a sectorial or convex probe and a vacuum pump are required. Collection is performed with minimal stress to the donor. An average of 8 to 10 oocytes are collected per OPU with an average production of 2 transferable embryos. The laboratory production of embryos from such oocytes does not differ from that of oocytes harvested at slaughter as the results after transfer to final recipients. For other species such as buffalo and horses OPU has been attempted similarly to cattle and data will be presented and reviewed. For small ruminants, laparotomy or laparoscopy seems the only reliable route so far to collect oocytes from live donors.  相似文献   

12.
Half embryos produced from 8-cell or compacted stages were cultured in vitro for 1-2 days and transferred to oviducts or uteri of recipients at different stages of pseudopregnancy. The proportion of live fetuses was low (8-12%), except for one group (27%) in which half embryos were cultured in vitro for 1 day and transferred into oviducts on the 1st day of pregnancy. Monozygotic twin production rate, however, was low (1 out of 10) even in this group. Fetal weight on the 18th day of gestation was significantly lower after transfer of half embryos than after transfer of similarly treated but undivided embryos. Half embryos produced from the 2-cell stage were inserted into empty zonae, embedded in agar, cultured in ligated mouse oviducts for 2-4 days and transferred to oviducts of recipient females on the 1st day of pregnancy or pseudopregnancy. When twin embryos cultured for 2-3 days were transferred to pseudopregnant recipients together with control embryos, 4 sets of monozygotic twins and 5 singletons out of 10 sets of twin embryos were obtained on Days 18-19 of gestation, giving a survival rate of 65%.  相似文献   

13.
I investigated the seasonal change in factors affecting embryonic mortality in the rosy bitterling, Rhodeus ocellatus kurumeus, a freshwater fish that spawns on the gills of living unionid mussels. Research was conducted in a small pond during 1999 and 2001 in which bitterling were provided with Anodonta sp. mussels for spawning. Bitterling spawned between April and July, peaking mid–late May. Seasonal survival rate of bitterling embryos in their mussel hosts was unimodal, with a peak between late April and mid May (about 70% of total spawnings). In mid April, survival was about 50%. The lowest survival was from late May to July (0%). Losses of bitterling embryos from mussels were identified by ejections from the mussel host. Ejections were categorized as either ejections of live embryos, or ejections of embryos that died in the mussel and were subsequently expelled from the mussel. Ejection rates of live embryos were higher in the earlier part of the spawning period (early–mid April) and dead embryo ejections in the later period (after June). The ejection rate of live embryos was higher among younger embryos earlier in the season, probably because of the incomplete development of morphological and behavioural traits associated with maintaining the embryo inside the mussel gill chambers, and as a consequence of a more protracted developmental period at low temperatures making them more susceptible to ejection. The ejection rate of dead embryos was higher in older embryos later in the season, and in larger mussels and at high embryo densities. The survival of embryos in mussels was probably related to oxygen availability, with mortalities probably caused by asphyxiation. Increased embryo mortalities may arise through competition among embryos, between embryos and mussel, and ambient dissolved oxygen levels. The optimal period for bitterling to spawn may represent a balance between two opposing factors; with positive and negative effects of a seasonal rise in temperature directly affecting embryonic growth rate and oxygen availability.An erratum to this article can be found at This revised version was published online January 2005 with the correction of the authors name.  相似文献   

14.
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.  相似文献   

15.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   

16.
Survival of biopsied and sexed bovine demi-embryos   总被引:3,自引:0,他引:3  
The viability of sex-diagnosed bovine demi-embryos was investigated after transfer. Day-7 morulae and blastocysts were subjected to splitting and biopsy in PBS + 4mg/ml polyvinylpyrrolidone + 200mM sucrose using a microblade. The biopsy (approximately 2 to 8 blastomeres) was transferred to a tube, and its presence in the tube was verified by examination under a stereomicroscope. After proteinase K treatment, repetetive male-specific DNA was amplified by the polymerase chain reaction (PCR). No autosomal control primers were used in the PCR. Instead, the absence of a characteristic Y-specific product together with the amplification of non-specific products was considered an indication of a female sample. The biopsied demi-embryos were transferred either singly or in pairs to synchronous heifer or cow recipients 6 to 10 h after flushing. Sex diagnosis was carried out within 6 to 7 h. Of 19 original embryos, 7 were diagnosed as males and 5 as females. The DNA of the biopsies of the remaining 7 embryos did not result in any amplification products. Since 5 of these samples were seen in the tubes prior to PCR, the corresponding embryos were considered "potential females." The sex of the last 2 samples could not be determined. Nine of 10 embryos were correctly sexed as revealed by calving data. Of the 38 transferred demi-embryos, 16 had developed to live fetuses as detected by ultrasonography on Day 65 of pregnancy. Eleven live calves and three stillborn calves were delivered. After bisection, biopsy and single transfer, 6 live calves were born from 7 original embryos (86%). After transfer of both halves into the same recipient, only 5 live calves from 12 original embryos were produced (42%). None of the 4 manipulated Grade-2 embryos survived to term, nor did any of the 4 manipulated blastocysts. Of the 14 original Grade-1 morulae manipulated and transferred, 15 were live fetuses at Day 65, and 11 live calves were born.  相似文献   

17.
The production of valuable pharmaceutical proteins using transgenic animals as bioreactors has become one of the goals of biotechnology. However, the efficiency of producing transgenic animals by means of pronuclear microinjection is low. This may be attributed in part to the low integration rate of foreign DNA. Therefore, a large number of recipients are required to produce transgenic animals. We recently developed a transgenic procedure that combined the techniques of goat oocyte in vitro maturation (IVM), in vitro fertilization (IVF), microinjection, preimplantation selection of the transgenic embryos with nested PCR and transferring the transgenic embryos into the recipient goat uterus to produce transgenic goats. Thirty-seven transgenic embryos determined by nested PCR were transferred to thirty-two recipient goats. In the end, four live-born kids were produced. As predicted, all the live kids were transgenic as identified by PCR as well as Southern blot hybridization, The integration rate was 100% (4/4) which was completely in accordance with the results of embryo preimplantation detection. The results showed a significant decrease in the number of recipients required as only 8 recipients (32/4) were needed to obtain one live transgenic goat. We suggest that the transgenic system described herein may provide an improved way to efficiently produce transgenic goats on a large scale.  相似文献   

18.
In this study we investigated spontaneous oocyte activation and developmental ability of rat embryos of the SD-OFA substrain. We also tried to improve the somatic cell nuclear transfer (SCNT) technique in the rat by optimizing methods for the production of reconstructed embryos. About 20% of oocytes extruded the second polar body after culture for 3 hr in vitro and 84% of oocytes were at the MII stage. MG132 blocked spontaneous activation but decreased efficiency of parthenogenetic activation. Pronuclear formation was more efficient in strontium-activated oocytes (66.1-80.9%) compared to roscovitine activation (24.1-54.5%). Survival rate after enucleation was significantly higher (89.4%) after slitting the zona pellucida and then pressing the oocyte with a holding pipette in medium without cytochalasin B (CB) compared to the conventional protocol using aspiration of the chromosomes after CB treatment (67.7%). Exposure of rat ova to UV light for 30 sec did not decrease their in vitro developmental capacity. Intracytoplasmic cumulus cell injection dramatically decreased survival rate of oocytes (42%). In contrast, 75.9% of oocytes could be successfully electrofused. Development to the 2-cell stage was reduced after SCNT (24.6% compared 94.6% in controls) and none from 244 reconstructed embryos developed in vitro beyond this stage. After overnight in vitro culture, 74.4% of the SCNT embryos survived and 56.1% formed pronuclei. The pregnancy rate of 33 recipients after the transfer of 695 of these cloned embryos was, however, very low (18.2%) and only six implantation sites could be detected (0.9%) without any live fetuses and offspring.  相似文献   

19.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

20.
Cryopreservation of 2-cell embryos is an effective technology for storage of genetically engineered mouse strains. Transport of genetically engineered mice between laboratories has frequently been performed using such cryopreserved 2-cell embryos. However, the receiving laboratory requires proficient skills and special instruments to obtain live young from cryopreserved and transported embryos. Therefore, in this study, we tried to address the storage and transport of vitrified/warmed 2-cell embryos at a cold temperature. In cold storage experiments, the development rates of 2-cell embryos stored in M2 medium for 24, 48 and 72 h into blastocysts were relatively high (83%, 63% and 43%, respectively). Although, 2-cell embryos stored in PB1 and mWM maintained the developmental potency for 24 h, the rates were markedly decreased to low levels after 48 h (PB1: 0%; mWM: 5%). In transport experiments, many pups were obtained from vitrified/warmed 2-cell embryos transported at a cold temperature in all receiving laboratories (incidence of successful development: 49%; 249/511). In summary, short-term storage and transport of vitrified/warmed 2-cell embryos in M2 medium at a cold temperature can maintain their ability to develop into live young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号