首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In humans, plant cell wall polysaccharides represent an important source of dietary fibres that are digested by gut microorganisms. Despite the extensive degradation of xylan in the colon, the population structure and the taxonomy of the predominant bacteria involved in degradation of this polysaccharide have not been extensively explored. The objective of our study was to characterize the xylanolytic microbial community from human faeces, using xylan from different botanic origins. The xylanolytic population was enumerated at high level in all faecal samples studied. The predominant xylanolytic organisms further isolated (20 strains) were assigned to Roseburia and Bacteroides species. Some Bacteroides isolates corresponded to the two newly described species Bacteroides intestinalis and Bacteroides dorei. Other isolates were closely related to Bacteroides sp. nov., a cellulolytic bacterium recently isolated from human faeces. The remaining Bacteroides strains could be considered to belong to a new species of this genus. Roseburia isolates could be assigned to the species Roseburia intestinalis. The xylanase activity of the Bacteroides and Roseburia isolates was found to be higher than that of other gut xylanolytic species previously identified. Our results provide new insights to the diversity and activity of the human gut xylanolytic community. Four new xylan-degrading Bacteroides species were identified and the xylanolytic capacity of R. intestinalis was further shown.  相似文献   

2.
Facultative methylotrophic bacteria of the genus Methylobacterium are consistently found in association with plants, particularly in the phyllosphere. To gain a better understanding of the mechanisms underlying the dispersal and occurrence of Methylobacterium on plants, diverse strains were isolated, identified, and studied with regard to their competitiveness on the model plant Arabidopsis thaliana. As a basis for this study a comprehensive collection of Methylobacterium isolates was established. Isolates were obtained from five different naturally grown A. thaliana populations and diverse other plant genera at these and further sites. They were classified using automated ribosomal internal spacer analysis (ARISA) and a representative subset was identified based on 16S rRNA gene sequence analysis. A comparison of their ARISA patterns with those generated based on a cultivation-independent approach from the same sampling material confirmed that the isolates were abundant colonizers of the studied plants. In competition experiments, colonization efficiency of the strains was found to be linked to phylogeny, rather than to the geographical origin or plant genus from which they were isolated. The most competitive colonizers were related to the species Methylobacterium tardum and Methylobacterium extorquens. Higher cell numbers were observed in the phyllosphere of A. thaliana when a mixture of different strains was applied relative to inoculation with only one strain, suggesting partial niche heterogeneity. Based on the results of the competition experiments, representative strains with different colonization efficiencies were selected, which will serve as models in future studies aiming at a better understanding of plant colonization by this bacterial genus. Among them is the meanwhile genome-sequenced strain M. extorquens PA1, which represents a competitive species of plant colonizers with a broad dispersal. This strain was characterized in more detail including physiological, morphological, and chemotaxonomical properties.  相似文献   

3.
叶际微生物研究进展   总被引:5,自引:0,他引:5  
植物的叶际是一个复杂的生态系统,微生物的生存环境条件严苛。其可被利用的营养成分较少,温湿度波动大。此外,较强的紫外线辐射对于叶际微生物的生存也有很大影响。但是植物叶际却有着丰富的微生物多样性,其中还有许多有益细菌和真菌。它们通过和植物寄主的互作,改善着叶际微生物的栖居环境;其对植物病原体的拮抗亦可提高植物的抗病性。植物叶际的微生物还可以产生激素以促进植物生长,还有一些微生物可以利用农药等污染有机物作为营养物质,在污染物的环境生物修复方面显示巨大的潜力。此外,叶际微生物作为一种生态学指标在生态稳定与环境安全评价中开始发挥显著的作用。  相似文献   

4.
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi‐controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field‐grown plants under a conventional flooded system of rice intensification (SRI) and in dry‐seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α‐proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml?1) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non‐heterocystous filaments under aerobic as well as anaerobic conditions. PCR‐DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.  相似文献   

5.
We explored the changes in richness, diversity and evenness of epiphytic (on the leaf surface) and endophytic (within leaf tissues) bacteria and fungi in the foliar phyllosphere of Quercus ilex, the dominant tree species of Mediterranean forests. Bacteria and fungi were assessed during ontogenic development of the leaves, from the wet spring to the dry summer season in control plots and in plots subjected to drought conditions mimicking those projected for future decades. Our aim was to monitor succession in microbiota during the colonisation of plant leaves and its response to climate change. Ontogeny and seasonality exerted a strong influence on richness and diversity of the microbial phyllosphere community, which decreased in summer in the whole leaf and increased in summer in the epiphytic phyllosphere. Drought precluded the decrease in whole leaf phyllosphere diversity and increased the rise in the epiphytic phyllosphere. Both whole leaf bacterial and fungal richness decreased with the decrease in physiological activity and productivity of the summer season in control trees. As expected, the richness of epiphytic bacteria and fungi increased in summer after increasing time of colonisation. Under summer dry conditions, there was a positive relationship between TRF (terminal restriction fragments) richness and drought, both for whole leaf and epiphytic phyllosphere, and especially for fungal communities. These results demonstrate that changes in climate are likely to significantly alter microbial abundance and composition of the phyllosphere. Given the diverse functions and large number of phyllospheric microbes, the potential functional implications of such community shifts warrant exploration.  相似文献   

6.
Fiber-degrading systems of different strains of the genus Fibrobacter   总被引:1,自引:0,他引:1  
The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolated strains, and looked for the presence of 10 glycoside hydrolase genes previously identified in S85. The NR9 F. intestinalis type strain, representative of the second species of the genus, was also included in this study. DNA-DNA hybridization and 16S rRNA gene sequencing first classified the strains and provided the phylogenetic positions of isolates of both species. Cellulase and xylanase activity analyses revealed similar activity profiles for all F. succinogenes strains. However, the F(E) strain, phylogenetically close to S85, presented a poor xylanolytic system and weak specific activities. Furthermore, the HM2 strain, genetically distant from the other F. succinogenes isolates, displayed a larger cellulolytic profile on zymograms and higher cellulolytic specific activity. F. intestinalis NR9 presented a higher cellulolytic specific activity and a stronger extracellular xylanolytic activity. Almost all glycoside hydrolase genes studied were found in the F. succinogenes isolates by PCR, except in the HM2 strain, and few of them were detected in F. intestinalis NR9. As expected, the fibrolytic genes of strains of the genus Fibrobacter as well as the cellulase and xylanase activities are better conserved in closely related phylogenetic isolates.  相似文献   

7.
The effect of air pollution on total phyllospheric microflora from two species of the epiphytic neotropical genus Tillandsia (Bromeliaceae) was studied by comparing unpolluted plants living in a forest (Escazú, San José) with polluted ones from an urban site of Costa Rica (San José city). Dilutions of homogenized leaf samples were plated on media suitable for each microbial group. For each microorganism group, total counts were performed and purified strains of randomly chosen colonies were identified. There was a global reduction in the number of living microorganisms due to pollution effects, especially yeasts and bacteria, while nitrogen-fixing microorganisms and fungi were less affected. Our results showed that the phyllosphere microflora of Tillandsia plants living in a tropical urban environment changes in terms of number and species composition of yeasts and bacteria with respect to plants living in unpolluted environment.  相似文献   

8.
The plant phyllosphere is intensely colonized by a complex and highly diverse microbial population and shows pronounced plant-species-specific differences. The mechanisms and influencing factors determining whether and in which density microorganisms colonize plant phyllosphere tissues are not yet fully understood. One of the key influencing factors is thought to be phytochemical concentration and composition. Therefore, correlations between various concentrations of individual glucosinolates and carotenoids in four different plant species-Brassica juncea, Brassica campestris, Cichorium endivia, and Spinacea oleracea-and the phyllospheric bacterial population size associated with the aerial parts of the same plants were analyzed. The concentration of various individual glucosinolates and carotenoids were measured using high-performance liquid chromatography. The phyllospheric bacterial population size including both nonculturable and culturable organisms was assessed using quantitative real-time polymerase chain reaction, and the physiological profile of the culturable microbial community was analyzed using the Biolog system. Results show significant differences between plant species in both concentration and composition of secondary metabolites, bacterial population size, and microbial community composition in three consecutively performed experiments. An interesting and underlying trend was that bacterial density was positively correlated to concentrations of beta-carotene in the plant phyllosphere of the four plant species examined. Likewise, the alkenyl glucosinolates, 2-propenyl, 3-butenyl, and 4-pentenyl, concentrations were positively correlated to the bacterial population density, whereas the aromatic glucosinolate 2-phenylethyl showed a negative correlation to the phyllospheric bacterial population size. Thus, we report for the first time the relationship between individual glucosinolate and carotenoid concentrations and the phyllospheric bacterial population size of nonculturable and culturable organisms and the phyllospheric microbial physiological profiles.  相似文献   

9.
Five gram-negative bacteria, all of which were Enterobacteriaceae, were isolated from the phyllosphere of green or senescing leaves of Rosa rugosa, and their phenotypic and physiological characteristics were examined. Partial 16S rDNA sequences led to identification of these isolates as Pantoea agglomerans, Klebsiella terrigena, Erwinia rhapontici, and two strains of Rahnella aquatilis. Interestingly, these phyllosphere bacteria had certain phenotypic and physiological convergences, while they showed their own metabolic properties toward phenolic compounds of plant origin. In particular, the two Ra. aquatilis isolates from the green leaves had a substrate-inducible gallate decarboxylase activity in the resting cells that had been cultured in 1 mM gallic acid- or protocatechuic acid-containing medium. The other three isolates from the senescing leaves did not have this enzyme activity. Simple phenolics that the Ra. aquatilis decarboxylatively produced from benzoic acid derivatives had better antimicrobial activities than those of the substrates.  相似文献   

10.
Epiphytic bacteria were isolated from strawberry plants cultivated in the field or in the greenhouse in order to investigate their interaction with leaf-surface transport properties. Colonization of lower leaf sides was higher on field-grown plants, whereas upper leaf sides were more densely colonized on plants cultivated in the greenhouse. Fungal isolates significantly contributed to total microbial biomass on leaf surfaces of greenhouse-grown strawberry plants, whereas these organisms were rarely abundant on field-grown plants. Microscopic investigations of bacteria in the phyllosphere revealed that the highest densities of bacteria were observed on living trichomes, which obviously provide a source of nutrients. Isolated strains were characterized by colony morphology, microscopy and histochemistry. About 324 isolated bacterial strains were grouped into 38 morphotypes. Of the morphotypes, 12 were identified by 16S rRNA gene sequencing. Dominating bacteria belonged to the genus Pseudomonas, Stenotrophomonas, Bacillus and Arthrobacter. Cuticular water permeability of isolated cuticular membranes and intact leaf disks was measured before and after treatment with one of the most prominent epiphytic bacteria, Pseudomonas rhizosphaerae. Results showed that cuticular transpiration was significantly increased by P. rhizosphaerae. This shows that leaf-surface properties, such as cuticular water permeability, can be influenced by bacteria, leading to improved habitable conditions in the phyllosphere.  相似文献   

11.
Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.  相似文献   

12.
Methylobacterium species are ubiquitous α-proteobacteria that reside in the phyllosphere and are fed by methanol that is emitted from plants. In this study, we applied whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (WC-MS) to evaluate the diversity of Methylobacterium species collected from a variety of plants. The WC-MS spectrum was reproducible through two weeks of cultivation on different media. WC-MS spectrum peaks of M. extorquens strain AM1 cells were attributed to ribosomal proteins, but those were not were also found. We developed a simple method for rapid identification based on spectra similarity. Using all available type strains of Methylobacterium species, the method provided a certain threshold similarity value for species-level discrimination, although the genus contains some type strains that could not be easily discriminated solely by 16S rRNA gene sequence similarity. Next, we evaluated the WC-MS data of approximately 200 methylotrophs isolated from various plants with MALDI Biotyper software (Bruker Daltonics). Isolates representing each cluster were further identified by 16S rRNA gene sequencing. In most cases, the identification by WC-MS matched that by sequencing, and isolates with unique spectra represented possible novel species. The strains belonging to M. extorquens, M. adhaesivum, M. marchantiae, M. komagatae, M. brachiatum, M. radiotolerans, and novel lineages close to M. adhaesivum, many of which were isolated from bryophytes, were found to be the most frequent phyllospheric colonizers. The WC-MS technique provides emerging high-throughputness in the identification of known/novel species of bacteria, enabling the selection of novel species in a library and identification without 16S rRNA gene sequencing.  相似文献   

13.
Understanding the current and future distributions of plant pathogens is critical to predict the plant performance and related economic benefits in the changing environment. Yet, little is known about the roles of environmental drivers in shaping the profiles of fungal plant pathogens in phyllosphere, an important habitat of microbiomes on Earth. Here, using a large-scale investigation of Eucalyptus phyllospheric microbiomes in Australia and the multiple linear regression model, we show that precipitation is the most important predictor of fungal taxonomic diversity and abundance. The abundance of fungal plant pathogens in phyllosphere exhibited a positive linear relationship with precipitation. With this empirical dataset, we constructed current and future atlases of phyllosphere plant pathogens to estimate their spatial distributions under different climate change scenarios. Our atlases indicate that the abundance of fungal plant pathogens would increase especially in the coastal regions with up to 100-fold increase compared with the current abundance. These findings advance our understanding of the distributions of fungal plant pathogens in phyllospheric microbiomes under the climate change, which can improve our ability to predict and mitigate their impacts on plant productivity and economic losses.  相似文献   

14.
Trichome density and type and cannabinoid content of leaves and bracts were quantitated during organ ontogeny for three clones of Cannabis sativa L. Trichome initiation and development were found to occur throughout leaf and bract ontogeny. On leaves, bulbous glands were more abundant than capitate-sessile glands for all clones, although differences in density for each gland type were evident between clones. On pistillate bracts, capitate-sessile glands were more abundant than the bulbous form on all clones, and both types decreased in relative density during bract ontogeny for each clone. The capitate-stalked gland, present on bracts but absent from vegetative leaves, increased in density during bract ontogeny. The capitate-stalked gland appeared to be initiated later than bulbous or capitate-sessile glands during bract development and on one clone it was first found midway in bract ontogeny. Nonglandular trichomes decreased in density during organ ontogeny, but the densities differed between leaves and bracts and also between clones. Specific regulatory mechanisms appear to exist to control the development of each trichome type independently. In addition, control of trichome density seems to be related to the plant organ and clone on which the gland type is located. Cannabinoid synthesis occurs throughout organ development and is selectively regulated in each organ. Typically, cannabinoid synthesis occurred at an increasing rate during bract development, whereas in developing leaves synthesis occurred at a decreasing rate. Cannabinoid content on a dry weight basis was generally greater for bracts than leaves. Analyses of leaves indicate that other tissues in addition to glands may contain cannabinoids, while for bracts the gland population can accommodate the cannabinoid content for this organ. The functional significance of trichomes and cannabinoids in relation to evolution is discussed.  相似文献   

15.
AIMS: To evaluate the patterns of the production of antimicrobial compounds by diverse collection of actinomycetes isolated from different geographies under alternative conditions of pH and salinity in the media. METHODS AND RESULTS: Actinomycetes were grouped based on their method of isolation and their phenotype diversity was determined by total fatty acid analysis. A total of 335 representative isolates, including 235 Streptomyces species and 100 actinomycetes from other taxa, were screened for the production of antimicrobial activities against a panel of bacteria, filamentous fungi and yeasts, including some of clinical relevance. Production of antimicrobial activities was detected in 230 strains. In the case of the genus Streptomyces, 181 antimicrobial activities (77% of the tested isolates) were recorded. The activities observed among the other actinomycetes taxa were lower (49% of the tested isolates). CONCLUSIONS: The results of this study support the idea that species of actinomycetes isolated in alternative selective conditions of pH and salinity present a significant capacity to produce compounds with antibacterial or antifungal activity. The best group of isolates in terms of production of active secondary metabolites was the one isolated in saline conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The results demonstrate that these actinomycetes strains isolated in alternative selective conditions of pH and salinity and collected from diverse geographical locations present a significant capacity to produce compounds with antibacterial or antifungal activity.  相似文献   

16.
Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.  相似文献   

17.
CM Feng  X Liu  Y Yu  D Xie  RG Franks  QY Xiang 《The New phytologist》2012,196(2):631-643
? Despite increasing interest in the molecular mechanisms of floral diversity, few studies have investigated the developmental and genetic bases of petaloid bracts. This study examined morphological patterns of bract initiation and expression patterns of B-class MADS-box genes in bracts of several Cornus species. We suggest that petaloid bracts in this genus may not share a single evolutionary origin. ? Developmental pathways of bracts and spatiotemporal expression of B-class genes in bracts and flowers were examined for four closely related dogwood species. ? Divergent morphological progressions and gene expression patterns were found in the two sister lineages with petaloid bracts, represented by Cornus florida and Cornus canadensis. Phylogeny-based analysis identified developmental and gene expression changes that are correlated with the evolution of petaloid bracts in C.?florida and C.?canadensis. ? Our data support the existence of independent evolutionary origins of petaloid bracts in C.?canadensis and C.?florida. Additionally, we suggest that functional transference within B-class gene families may have contributed to the origin of bract petaloidy in C.?florida. However, the underlying mechanisms of petaloid bract development likely differ between C.?florida and C.?canadensis. In the future this hypothesis can be tested by functional analyses of Cornus B-class genes.  相似文献   

18.
Epiphytic living Pseudomonas strains isolated from different Malus domestica cultivars were transformed with two reporter genes [green fluorescent protein (gfp) and luciferase (luxAB)]. The establishment and distribution of these bacteria on sterile, in vitro-propagated, and thus genetically identical, Malus domestica plants were continuously analysed with a cooled, back-illuminated, charge-coupled-device (CCD) camera system. The combination of the assessment of bioluminescence and the use of a CCD camera offer an intriguing method to study, non-invasively and in real time, plant-microbe interactions as well as the colonization of the phyllosphere by microorganisms. Here we report on the applicability and sensitivity of the method with the goal to investigate quantitatively the interaction of symbiotic and pathogenic microorganisms with the corresponding host plant. It will be shown that the three bacterial isolates of the genus Pseudomonas studied, differ considerably with respect to their establishment on the host plants. It will also be shown that the chosen host apple variety has an impact on the activity of the bacterial cultivars. Analysis by a laser scanning fluorescence microscope provides the first evidence for the mode by which the epiphytic microorganisms interact with the plant.  相似文献   

19.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

20.
A potential resource for bioconversion of domestic wastewater sludge   总被引:2,自引:0,他引:2  
Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号