首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ecological competition between brachiopods and bivalves is analysed by means of a quantitative palaeoecologic method applied on four assemblages located within a short stratigraphic interval, approximately 2 m thick, in the lower Tesero Member of the Werfen Formation (in the Southern Alps). The assemblages originate from the Tesero, Bulla and Sass de Putia sections. The analysed stratigraphic interval, uppermost Changhsingian in age, is located between the early and heaviest phase of the end-Permian mass extinction, which occurred across the Bellerophon/Werfen formational boundary (Event Boundary), and the Permian/Triassic boundary (Chronological Boundary), when nearly all the Permian stenotopic holdovers disappeared.These assemblages are characterised by small sized skeletons (“Lilliput effect”), which represent an adaptive survival strategy in stressed and harsh habitats resulting from the climatic and palaeoceanographic changes connected with the mass extinction. The Tesero assemblages are dominated by rhynchonelliform brachiopod Orbicoelia (bed CNT10) or Streptorhynchus (bed CNT11A), which were mostly attached at the top of shallow microbialitic mounds. These assemblages are again dominated by Permian stenotopic taxa and show a Palaeozoic structure. The Tesero habitat, which again permitted the survival of brachiopods, represented one of the last refuges in the western Tethys. On the contrary, the Bulla (BU9-10) and Sass de Putia (wPK13A) assemblages are bivalve-dominated, and thus show an ecologic structure typical of Early Triassic post-extinction marine benthic communities or Palaeozoic stressed marine communities. The bivalve-dominated assemblages proliferated in prevailing muddy siliciclastic substrates, with brief episodes of microbial algal growth. The most important environmental limiting factors and leading causes of end-Permian mass extinction are discussed in terms of palaeoautecologic and palaeosynecologic analysis.The different taxonomic composition and ecologic structure of the assemblages is related to palaeogeography, including water depth and connections with the open sea. The brachiopod-dominated assemblage, exclusive of the Tesero section, proliferated in microbial carbonate habitats in near-shore environments. The bivalve-dominated assemblages, which were more widespread than the brachiopod assemblages in the Dolomites and also occurred in other western Tethys localities, occur in more open and deeper marine environments. In the western Tethys margins, the local distribution of mixed faunas suggests that the extinction of Permian stenotopic taxa was caused by the onset of poisonous water on the shelves originating from deep marine environments.This extinction pattern appears to be a regional phenomenon and does not seem be applicable on a global scale. The extinction events were controlled by a complex network of interactive factors and the survival of faunal elements was probably stochastic.  相似文献   

2.
The Lower Triassic Werfen Formation of northern Italy represents an important archive for Early Triassic ecosystems. Based on quantitative community analysis using species level identifications, we reconstruct the recovery of benthic ecosystems after the end‐Permian mass extinction throughout this unit. The analysis of benthic macrofossil communities shows that incipient recovery has taken place during the Griesbachian and the Griesbachian–Dienerian transition. A probable deterioration in environmental conditions is observed towards the end of the Dienerian. The Smithian part of the Werfen Formation is characterized by high siliciclastic input, which ceases around the Smithian‐Spathian boundary. The Spathian marks the definitive phase of recovery in the Werfen Formation. The comparison of this pattern with other palaoegeographical regions suggests that both the Griesbachian recovery and the Dienerian decline were of inter‐regional if not global extent, whereas the Smithian diversity low in the Werfen Formation is a local signal. In contrast to the recovery dynamics of ammonoids and conodonts, the Smithian–Spathian boundary interval was no caesura for benthic ecosystems. The Spathian recovery pulse is possibly also an inter‐regional event, at least in the palaeotropics. These results are in contrast with the previously proposed scenario of persistent hostile conditions during the Griesbachian time interval and highlight an initial recovery phase restricted to Griesbachian times. Instead, the apparently sluggish recovery of benthic ecosystems was at least partly shaped by set‐backs due to short‐term environmental perturbations during the Dienerian.  相似文献   

3.
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.  相似文献   

4.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

5.
New sampling on critical intervals of the uppermost Permian and Triassic successions of the Northern Karakorum Terrain in the Karakorum Range (Pakistan) has refined the stratigraphy. Two types of successions may be distinguished in the Karakorum Range: a carbonate platform succession, spanning the whole interval from Upper Permian to Upper Triassic, possibly with several gaps; and a basinal succession, deposited from the Middle Permian to Early Carnian (Late Triassic), when the carbonate platform prograded into the basin. With the approaching and later docking of the Karakorum Block against the Asian margin closing the Paleo-Tethys, a portion of Karakorum emerged while another part subsided as a fore-deep, receiving clastics from the emerging Cimmerian Range. Molassic sediments filled the basin, whilst shallow-water carbonates transgressed over the emerged carbonate platform sometime between the latest Triassic and the Pliensbachian (Early Jurassic), with Cimmerian deformation occurring to the north. The age control is provided by conodonts, with assemblages of late Wuchiapingian, Changhsingian, Induan (Griesbachian and Dienerian), late Olenekian, early Anisian, late Ladinian, and early Carnian ages, respectively. Some information on the section around the P/T boundary is provided by palynology and isotopic C13 values. The dating of the Norian/Rhaetian platform is provided by foraminifers.  相似文献   

6.
7.
Summary During the Middle and early Late Triassic carbonate ramps and rimmed platforms developed at the northwestern margin of the Tethys ocean. In the Northern Calcareous Alps, Anisian stacked homoclinal ramps evolved through a transitional stage with distally steepened ramps to huge rimmed platforms of Late Ladinian to Early Carnian age. Middle Triassic to early Late Triassic facies and biota of basin, slope and platform depositional systems are described. Special emphasis is given to foraminifers, sponges, microproblematic organisms and algae. The Ladinian to early Carnian reef associations are characterized by the abundance of segmented sponges, microproblematica, biogenic crusts and synsedimentary cements. Among the foraminifers, recifal forms likeHydrania dulloi andCucurbita infundibuliformis (Carnian in age) are reported from the Northern Calcareous Alps for the first time. Some sphinctozoid sponges likeParavesicocaulis concentricus were known until now only from the Hungarian and Russian Triassic.  相似文献   

8.
The timing of recovery after the end‐Permian mass extinction has been a matter of debate, with some authors favouring a more rapid faunal recovery during the Early Triassic and others considering a more protracted biotic reestablishment spanning until the Middle Triassic. In this work, we investigated the lowermost Middle Triassic (Ladinian) carbonate deposits in the Catalan Basin to evaluate the potential environmental mechanisms and evolutionary constrains involved in the kilometre‐scale predominance of microbialites and the low‐diversity and high‐density Planolites association in a low‐latitude epicontinental setting. The studied sedimentary succession records the development from a low‐gradient, homoclinal microbial‐dominated carbonate ramp evolving towards a slightly inclined swell‐dominated type. Sedimentological analysis suggests that facies heterogeneity was controlled by pulses of syn‐rift tectonic activity, which compromised Peri‐Tethyan basin connectivity, reducing palaeobathymetry gradients. Although the monospecific nature of the studied trace‐fossil association may reflect the delayed recovery after the end‐Permian mass extinction, this is inconsistent with widespread, relatively high‐diversity ichnofaunas in carbonates elsewhere in the region. Since other Ladinian basins were characterized by the recurrence of microbial carbonates, low‐diversity ichnoassemblages and limited skeletal production, we hypothesize that shallow and restricted carbonate ramp settings harboured limited ecological complexity and widespread opportunistic colonization of the sediment when compared to coeval open marine locations.  相似文献   

9.
三叠系龙介类化石在欧洲早有报道。在我国四川江油渔洞子剖面下三叠统飞仙关组底部牙形刺Hindeodus pavus带微生物岩中首次发现环节动物龙介类化石Spirorbisphlyctaena,与以蓝菌为主的自养型底栖微生物群落共生,是早三叠世生物复苏的先驱者。  相似文献   

10.
The Permo-Triassic terrestrial and freshwater tetrapod communities of Eastern Europe are reconstructed as food-webs. The Late Permian theriodont-dinocephalian community (Ocher, Mezen, Isheyevo) changes to a latest Permian theriodont-pareiasaur community (North Dvina, Vyazniki). After a major extinction, the Triassic thecodontian-dicynodont communities appear, a lystrosaurid one in the Early Triassic (Lower and ?Upper Vetluga), and a kannemeyerid one in the later Early Triassic (?Yarenga) and the Mid Triassic (Donguz, Bukobay). Similar stages are represented in the evolution of aquatic communities: the Late Permian temnospondyl community (Ocher, Isheyevo), the latest Permian chroniosuchian one (North Dvina, Vyazniki), the Lower and Middle Triassic new temnospondyl one (from Vetluga to Bukobay). The faunal changes in Eastern Europe are mirrored in other parts of the world, although there are some endemic Russian forms.  相似文献   

11.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

12.
Permian–Triassic boundary sections in the Julfa (NW Iran) and Abadeh (Central Iran) regions display a succession of three characteristic rock units, (1) the Paratirolites Limestone with the mass extinction horizon at its top, (2) the ‘Boundary Clay’, and (3) the earliest Triassic Elikah Formation with the conodont P–Tr boundary at its base. The carbonate microfacies reveals a facies change, in the sections near Julfa, within the Paratirolites Limestone with an increasing number of intraclasts, Fe–Mn crusts, and biogenic encrustation. A decline in carbonate accumulation occurs towards the top of the unit with a sponge packstone in the sections, and finally resulting in a complete demise of the carbonate factory. The succession of the ‘Boundary Clay’ differs in the two regions; thin horizons of sponge packstone are present in the Julfa region and ‘calcite fans’ of probably inorganic origin in the Abadeh Region. The skeletal carbonate factory of the Late Permian was restored with the deposition of microbial carbonates at the base of the Elikah Formation, where densely laminated bindstone, floatstone with sparry calcite spheres, and oncoid wackestone/floatstone predominate.  相似文献   

13.
Carbonate and total organic carbon stable isotope analyses of the Upper Permian and Lower Triassic succession in the Masore section in western Slovenia indicate a high storage of organic matter during the Upper Permian, as well as the well known worldwide light carbon isotope event across the P/Tr boundary. The perturbations in the global carbon cycle observed in the investigated section span an approximately 50 cm thick interval (from –11 cm below to +41 cm above the lithostratigraphically determined P/Tr boundary), and coincide more or less with changes in lithology, as well as with an abrupt disappearance of Upper Permian marine fauna. In this section changes in the sedimentary environment are most probably related to Upper Permian—Lower Triassic sea level changes. The carbonate and organic carbon negative peak anomaly could be explained by accelerated changes in the end Permian carbon cycle, due to some co-occurring events, such as pronounced erosion and oxidation of organic carbon, a possible release of methane from stored hydrates, and volcanic activity, as well as by a sudden reduction in primary productivity triggered by not yet completely satisfactorily explained mechanisms.  相似文献   

14.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

15.
广西南部二叠纪长兴期放射虫动物群   总被引:4,自引:2,他引:2  
广西南宁南部柳桥区的长兴组上部硅质岩中存着精美的长兴期晚期放射虫动物群,共有24属39例,其中3个新种,其中以Latentifistularia最为常见,其次是Albaillllidae和Entactiniidae,属于二叠纪晚期的Neoalbaillella optima组合。半生生物有有孔虫、海绵骨针、腕足动物等。多数属在接近二叠纪-三叠世界线附近消失,但生物群中已出现少量三叠纪分子。  相似文献   

16.
A new Early Triassic marine fauna is described from an exotic block (olistolith) from the Ad Daffah conglomerate in eastern Oman (Batain), which provides new insights into the ecology and diversity during the early aftermath of the Permian–Triassic Boundary mass extinction. Based on conodont quantitative biochronology, we assign a middle Griesbachian age to the upper part of this boulder. It was derived from an offshore seamount and yielded both nektonic and benthic faunas, including conodonts, ammonoids, gastropods and crinoid ossicles in mass abundance. This demonstrates that despite the stratigraphically near extinction at the Permian–Triassic Boundary, Crinoidea produced enough biomass to form crinoidal limestone as early as middle Griesbachian time. Baudicrinus, previously placed in Dadocrinidae, is now placed in Holocrinidae; therefore, Dadocrinidae are absent in the Early Triassic, and Holocrinidae remains the most basal crown‐group articulates, originating during the middle Griesbachian in the Tethyan Realm. Abundant gastropods assigned to Naticopsis reached a shell size larger than 20 mm and provide another example against any generalized Lilliput effect during the Griesbachian. Whereas the benthic biomass was as high as to allow the resumption of small carbonate factories, the taxonomic diversity of the benthos remained low compared to post‐Early Triassic times. This slow benthic taxonomic recovery is here attributed to low competition within impoverished post‐extinction faunas.  相似文献   

17.
Diethard Sanders  Karl Krainer 《Facies》2005,51(1-4):522-540
During the Early Permian, in the area of the Carnic Alps, a quartz-gravelly beach fringed a mixed siliciclastic-carbonate lagoon with fleshy algal meadows and oncoids; seaward, an ooid shoal belt graded down dip to a low-energy carbonate inner shelf with phylloid algal meadows. In limestones, foraminiferal biomurae and bioclast preservation record tapholoss by rotting of non-calcified organisms (interpreted as fleshy algae) and by dissolution of aragonitic fossils. Carbonate loss by dissolution was counteracted and, locally, perhaps exceeded by carbonate precipitation of encrusting foraminifera and as oncoids. Sites of abrasion and carbonate dissolution (beach), sites with tapholoss by rotting and dissolution, but with microbialite/foraminiferal carbonate precipitation (lagoon, inner shelf), and sites only of carbonate precipitation (ooid shoals) co-existed on discrete shelf compartments. Compartmentalized, contemporaneous carbonate dissolution and precipitation, to total amounts yet difficult to quantify, impede straightforward estimates of ancient carbonate sediment budget.  相似文献   

18.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

19.
《Palaeoworld》2016,25(2):188-198
Carbonate concretions with structures and fossil groups associated with microbialite developed in a dolostone crust at the Permian–Triassic boundary of the Xishan section in Jiangsu Province, South China. These structures include clotted fabrics and laminated carbonate needles, as well as abundant carbonate crystal fans. Fossil groups associated with microbialite include microconchids, small gastropods, and small foraminifers. These fabrics and fossils suggest that the concretions are carbonate microbialite blocks developed in the dolostone crust. On the basis of the analysis of the microfabrics and the fossil groups together with a comparison to modern analogues, we attribute the formation of the micritic patches in the microbialite concretions to the calcification of cyanobacterial mats via carbonate nanoparticles and we attribute the carbonate crystal fans to the direct recrystallization of micritic carbonates. The sparitic patches were interpreted as either the direct recrystallization of micritic carbonates or the precipitation of carbonate spars in the inter-/intra-spaces of metazoan shells together with the recrystallization of these shells. The similarities to modern stromatolites, both in morphology and in internal texture, suggest that the laminated carbonate needles are stromatolite laminae built by filamentous cyanobacteria. The preservation of these microbialite microfabrics indicates that early lithification by carbonate precipitation was widespread and intense following the end-Permian boundary events. The weak development of microbialites as small concretions may be attributed to the deeper water depth and the lower water energy in the Xishan area during the earliest Triassic.  相似文献   

20.
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号