首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parabrachial and adjacent K?lliker-Fuse (PBN/KF) nuclei play a key role in relaying visceral afferent inputs to the hypothalamus and limbic system and are, thus, believed to participate in generating nausea and affective responses elicited by gastrointestinal (GI) signals. In addition, the PBN/KF region receives inputs from the vestibular system and likely mediates the malaise associated with motion sickness. However, previous studies have not considered whether GI and vestibular inputs converge on the same PBN/KF neurons, and if so, whether the GI signals alter the responses of the cells to body motion. The present study, conducted in decerebrate cats, tested the hypothesis that intragastric injection of copper sulfate, which elicits emesis by irritating the stomach lining, modifies the sensitivity of PBN/KF neurons to vertical plane rotations that activate vestibular receptors. Intragastric copper sulfate produced a 70% median change in the gain of responses to vertical plane rotations of PBN/KF units, whose firing rate was modified by the administration of the compound; the response gains for 16 units increased and those for 17 units decreased. The effects were often dramatic: out of 51 neurons tested, 13 responded to the rotations only after copper sulfate was injected, whereas 10 others responded only before drug delivery. These data show that a subset of PBN/KF neurons, whose activity is altered by a nauseogenic stimulus also respond to body motion and that irritation of the stomach lining can either cause an amplification or reduction in the sensitivity of the units to vestibular inputs. The findings imply that nausea and affective responses to vestibular stimuli may be modified by the presence of emetic signals from the GI system.  相似文献   

2.
The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ~17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.  相似文献   

3.
Summary The vestibulo-ocular reflex undergoes adaptive changes that require inputs from the cerebellar flocculus onto brainstem vestibular neurons. As a step toward developing an in vitro preparation in chicks for studying the synaptic basis of those changes, we have elucidated the organization of the pathways through which the flocculus influences vestibulo-ocular movements. Electrical stimulation of the vestibular ampulla evoked brief, contralaterally directed movements in both eyes. Although single current pulses to the flocculus elicited no response, conjunctive stimulation of the flocculus and the vestibular apparatus significantly reduced the vestibularly-evoked movement. Trains of current pulses applied to the flocculus and ampulla evoked eye movements directed toward and away from the side of stimulation, respectively. Recordings from the brainstem revealed neurons that were activated by ipsilateral vestibular stimulation and inhibited by ipsilateral floccular stimulation. Our sample included neurons in the lateral vestibular nucleus, the ventrolateral portion of the medial vestibular nucleus, and the superior vestibular nucleus. Similarities between these findings and those of similar studies in mammals indicate that the chick will provide a good model system for cellular studies of adaptive changes in the vestibulo-ocular reflex.Abbreviations FTN flocculus target neuron - VOR vestibuloocular reflex  相似文献   

4.
Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.  相似文献   

5.
Previous studies in humans showed that genioglossal muscle activity is higher when individuals are supine than when they are upright, and prior experiments in anesthetized or decerebrate animals suggested that vestibular inputs might participate in triggering these alterations in muscle firing. The present study determined the effects of whole body tilts in the pitch (nose-up) plane on genioglossal activity in a conscious feline model and compared these responses with those generated by roll (ear-down) tilts. We also ascertained the effects of a bilateral vestibular neurectomy on the alterations in genioglossal activity elicited by changes in body position. Both pitch and roll body tilts produced modifications in muscle firing that were dependent on the amplitude of the rotation; however, the relative effects of ear-down and nose-up tilts on genioglossal activity were variable from animal to animal. The response variability observed might reflect the fact that genioglossus has a complex organization and participates in a variety of tongue movements; in each animal, electromyographic recordings presumably sampled the firing of different proportions of fibers in the various compartments and subcompartments of the muscle. Furthermore, removal of labyrinthine inputs resulted in alterations in genioglossal responses to postural changes that persisted until recordings were discontinued approximately 1 mo later, demonstrating that the vestibular system participates in regulating the muscle's activity. Peripheral vestibular lesions were subsequently demonstrated to be complete through the postmortem inspection of temporal bone sections or by observing that vestibular nucleus neurons did not respond to rotations in vertical planes.  相似文献   

6.
刺激室旁核及加压素对大鼠胃缺血-再灌注损伤的保护作用   总被引:11,自引:1,他引:10  
Zhang JF  Zhang YM  Yan CD  Zhou XP  Qi YJ 《生理学报》2002,54(2):133-138
采用夹闭大鼠腹腔动脉30min,松开动脉夹血流复灌1h的胃缺血-再灌注损伤(gastric ischemia-reper-fusion injury,GI-RI)模型,观察了电或化学刺激室旁核(paraventricular nucleus,PVN)及外源性加压素(arginine-va-sopression,AVP)对GI-RI的影响,并对PVN的调控通路进行了初步分析。结果表明:电或化学刺激PVN后,GI-RI显著减轻;损毁双侧孤束核(nucleus tractus solitarius,NTS)或一侧NTS内注射AVP-V1受体阻断剂,均能取消电刺激PVN对GI-RI的效应;去除脑垂体后不影响PVN的作用;切断膈下迷走神经或切除腹腔交感神经节,则能加强电刺激PVN对GI-RI的影响;PVN内注射不同剂量的AVP同样能减轻大鼠GI-RI损伤。结果提示:PVN及AVP对大鼠GI-RI具有保护作用;PVN的这种作用可能是因电或化学刺激后,激活了其中的加压素能神经元,经其下行投射纤维释放AVP作用于NTS神经元的VAP-V1受体,并通过迷走和交感神经介导,从而影响GI-RI;而似与PVN-垂体通路关系不大。  相似文献   

7.
孙开奇  顾桂宝 《生理学报》1991,43(3):213-219
Single unit discharges were extracellularly recorded from the neurons in the lateral parabrachial nucleus (LPBN) and responses of the recorded units to antidromic stimulation of the subfornical organ (SFO) and to orthodromic stimulation of the nucleus tractus solitarius (NTS) were observed in urethane-anesthetized rats. Following electrical stimulation of the SFO, 9.9% (51/151) of the LPBN units were antidromically activated. After activation of peripheral baroreceptors by raising arterial blood pressure with an intravenous injection of phenylephrine, 40.7% (22/54) of the LPBN units were inhibited and 27.8% (17/54) excited. Following orthodromic stimulation of the depressor area in the NTS, 55.6% (94/169) of the LPBN units showed an increase and 22.5% (38/169) a decrease in firing rates. Among the LPBN neurons antidromically activated by SFO stimulation, 2 units were inhibited by phenylephrine administrated i.v.; of the 8 units tested, when the NTS was stimulated, 6 were excited and 2 inhibited. The results suggest that the LPBN neurons may receive inhibitory or excitatory baroreceptive inputs from the NTS and then relay it directly to SFO.  相似文献   

8.
Recent work on the coding of spatial information in central otolith neurons has significantly advanced our knowledge of signal transformation from head-fixed otolith coordinates to space-centered coordinates during motion. In this review, emphasis is placed on the neural mechanisms by which signals generated at the bilateral labyrinths are recognized as gravity-dependent spatial information and in turn as substrate for otolithic reflexes. We first focus on the spatiotemporal neuronal response patterns (i.e. one- and two-dimensional neurons) to pure otolith stimulation, as assessed by single unit recording from the vestibular nucleus in labyrinth-intact animals. These spatiotemporal features are also analyzed in association with other electrophysiological properties to evaluate their role in the central construction of a spatial frame of reference in the otolith system. Data derived from animals with elimination of inputs from one labyrinth then provide evidence that during vestibular stimulation signals arising from a single utricle are operative at the level of both the ipsilateral and contralateral vestibular nuclei. Hemilabyrinthectomy also revealed neural asymmetries in spontaneous activity, response dynamics and spatial coding behavior between neuronal subpopulations on the two sides and as a result suggested a segregation of otolith signals reaching the ipsilateral and contralateral vestibular nuclei. Recent studies have confirmed and extended previous observations that the recovery of resting activity within the vestibular nuclear complex during vestibular compensation is related to changes in both intrinsic membrane properties and capacities to respond to extracellular factors. The bilateral imbalance provides the basis for deranged spatial coding and motor deficits accompanying hemilabyrinthectomy. Taken together, these experimental findings indicate that in the normal state converging inputs from bilateral vestibular labyrinths are essential to spatiotemporal signal transformation at the central otolith neurons during low-frequency head movements.  相似文献   

9.
Unit responses in the anterior sigmoid gyrus of cats anesthetized with chloralose (70 mg/kg) to vestibular nerve stimulation and their interaction with responses to acoustic and facial nerve stimulation were investigated. The focus of maximal activity of the vestibular projection was shown to lie a little rostrally to the anterior suprasylvian sulcus. The modality specificity of this part of the cortex to vestibular impulses is reflected in the shortest values of latent periods and the distinct phasic character of the responses, and also in the numerical preponderance of neurons with short-latency responses. Although considerable topographic overlapping of the vestibular projection by acoustic and somatosensory (facial zone) projections is found, the vestibular afferent input predominates over the other afferent inputs.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 353–358, July–August, 1981.  相似文献   

10.
The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.  相似文献   

11.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

12.
We determined the activity of neurons within the nucleus of the solitary tract (NTS) after stimulation of the cornea and assessed whether this input affected the processing of baroreceptor and peripheral chemoreceptor inputs. In an in situ, unanesthetized decerebrate working heart-brain stem preparation of the rat, noxious mechanical or electrical stimulation was applied to the cornea, and extracellular single unit recordings were made from NTS neurons. Cornea nociceptor stimulation evoked bradycardia and an increase in the cycle length of the phrenic nerve discharge. Of 90 NTS neurons with ongoing activity, corneal stimulation excited 51 and depressed 39. There was a high degree of convergence to these NTS neurons from either baroreceptors or chemoreceptors. The excitatory synaptic response in 12 of 19 baroreceptive and 10 of 15 chemoreceptive neurons was attenuated significantly during concomitant electrical stimulation of the cornea. This inhibition was GABA(A) receptor mediated, being blocked by pressure ejection of bicuculline. Thus the NTS integrates information from corneal receptors, some of which converges onto neurons mediating reflexes from baroreceptors and chemoreceptors to inhibit these inputs.  相似文献   

13.
A variety of experimental approaches in human subjects and animal models established that the vestibular system contributes to regulation of respiration. In cats, the surgical elimination of labyrinthine signals produced changes in the spontaneous activity and posturally related responses of a number of respiratory muscles. However, these effects were complex and sometimes varied between muscle compartments, such that the physiological role of vestibulo-respiratory responses is unclear. The present study determined the functional significance of vestibulo-respiratory influences by examining the consequences of a bilateral labyrinthectomy on breathing rate and the pressure, volume, and flow rate of air exchanged during inspiration and expiration as body orientation with respect to gravity was altered. Data were collected from conscious adult cats acclimated to breathing through a facemask connected to a pneuomotach during 60 degrees head-up pitch and ear-down roll body rotations. Removal of vestibular inputs resulted in a 15% reduction in breathing rate, a 13% decrease in minute ventilation, a 16% decrease in maximal inspiratory airflow rate, and a 14% decrease in the maximal expiratory airflow rate measured when the animals were in the prone position. However, the lesions did not appreciably affect phasic changes in airflow parameters related to alterations in posture. These results suggest that the role of the vestibular system in the control of breathing is to modify baseline respiratory parameters in proportion to the general intensity of ongoing movements, and not to rapidly alter ventilation in accordance with body position.  相似文献   

14.
Our previous studies (Boscan P, Kasparov S, and Paton JF. Eur J Neurosci 16: 907-920, 2002) showed that activation of somatic afferents attenuated the baroreceptor reflex via neurokinin type 1 (NK(1)) and GABA(A) receptors within the nucleus of the solitary tract (NTS). The periaqueductal gray matter (PAG) can also depress baroreceptor reflex function and project to the NTS. In the present study, we have tested the possibility that the dorsolateral (dl)-PAG projects to the NTS neurons that also respond to somatic afferent input. In an in situ, arterially perfused, unanesthetized decerebrate rat preparation, somatic afferents (brachial plexus), cervical spinal cord, and dl-PAG were stimulated electrically, whereas NTS neurons were recorded extracellularly. From 45 NTS neurons excited by either brachial plexus or dl-PAG stimulation, 41 received convergence excitatory inputs from both afferents. Onset latency and evoked peak discharge frequency from brachial plexus afferents were 39.4 +/- 4.7 ms and 10.7 +/- 1.1 Hz, whereas this was 43.9 +/- 6.4 ms and 7.9 +/- 1 Hz, respectively, following dl-PAG stimulation. As revealed by using a paired pulse stimulation protocol, monosynaptic connections were found in 9 of 36 neurons tested from both spinal cord and dl-PAG. We tested NK(1)-receptor sensitivity in 38 neurons that received convergent inputs from brachial plexus/PAG. Fifteen neurons were sensitive to selective antagonism of NK(1) receptors. CP-99994, the NK(1) antagonist, failed to alter ongoing firing activity but reduced the evoked peak discharge frequency following stimulation of both brachial plexus (from 12.3 +/- 1.8 to 7.2 +/- 1.3 Hz; P < 0.01) and PAG (from 7.8 +/- 1.5 to 4.5 +/- 1 Hz; P < 0.01). We conclude that 1) somatic brachial and PAG afferents can converge onto single NTS neurons; 2) this convergence occurs via either direct or indirect pathways; and 3) NK(1) receptors are activated by some of these inputs.  相似文献   

15.
Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25 M; 10 nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50 ng; 20 nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex.  相似文献   

16.
The discharge of secondary vestibular neurons relays the activity of the vestibular endorgans, occasioned by movements in three-dimensional physical space. At a slightly higher level of analysis, the discharge of each secondary vestibular neuron participates in a multifiber projection or pathway from primary afferents via the secondary neurons to another neuronal population. The logical organization of this projection determines whether characteristics of physical space are retained or lost. The logical structure of physical space is standardly expressed in terms of the mathematics of group theory. The logical organization of a projection can be compared to that of physical space by evaluating its symmetry group. The direct projection from the semicircular canal nerves via the vestibular nuclei to neck motor neurons has a full three-dimensional symmetry group, allowing it to maintain a three-dimensional coordinate frame. However, a projection may embed only a subgroup of the symmetry group of physical space, which incompletely mirrors the properties of physical space. The major visual and vestibular projections in the rabbit via the inferior olive to the uvula-nodulus carry three degrees of freedom—rotations about one vertical and two horizontal axes—but do not have full three dimensional symmetry. Instead, the vestibulo-olivo-nodular projection has symmetries corresponding to a product of two-dimensional vestibular and one-dimensional optokinetic spaces. This combination of projection symmetries provides the foundation for distinguishing horizontal from vertical rotations within a three dimensional space. In this study, we evaluate the symmetry group given by the physiological organization of the vestibulo-olivo-nodular projection. Although it acts on the same sets of elements and mirrors the rotations that occur in physical space, the physiological transformation group is distinct from the spatial group. We identify symmetries as products of physiological and spatial transformations. The symmetry group shapes the information the projection conveys to the uvula-nodulus; this shaping may depend on a physiological choice of generators, in the same way that function depends on the physiological choice of coordinates. We discuss the implications of the symmetry group for uvula-nodulus function, evolution, and functions of the vestibular system in general.  相似文献   

17.
Secondary vestibular neurons exhibit a wide variety of responses to a head movement, with the response of each secondary neuron depending upon the particular primary afferents converging onto it. A single head movement is thereby registered in a distributed manner. This paper focuses on implications of afferent convergence to the relative timing of secondary neuron response modulation during rotational movements about a combination of horizontal axes. In particular, the neurons of interest are those that receive input from afferents innervating the vertical semicircular canals, and the movements of interest are those that have a sinusoidal component about one vertical canal axis and a sinusoidal component about another, approximately orthogonal, vertical canal axis. Under these conditions, the present research shows that it is possible for two or more secondary neurons to have a different relative timing of response (i.e., different relative phase of the periodic modulation in firing rate) for different head movements, and for the neurons to switch their order of response for different movements. For particular head movements, those same neurons will respond in phase. From the point of view of the nervous system, the relative timing of neuron responses may tell which movement is taking place, but with certain restrictions as discussed in the present paper. Shown here is that, among those head movements for which the two components of rotation may be at any phase relative to one another and have any relative amplitude, an in-phase response of just two neurons cannot identify a single motion. Two neurons that respond in phase for one motion must respond in phase for an entire range of motions; all motions in that range are thus response-equivalent, in the sense that the pair of neurons cannot distinguish between the two motions. On the other hand, an in-phase response of three neurons can identify a single motion, for certain patterns of primary afferent convergence. Received: 16 December 1996 / Accepted in revised form: 3 April 1998  相似文献   

18.
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.  相似文献   

19.
Experimental evidence suggests that glucose modulates gastric functions via vagally mediated effects. It is unclear whether glucose affects only peripheral vagal nerve activity or whether glucose also modulates vagal circuitry at the level of the brain stem. This study used whole cell patch-clamp recordings from neurons of the nucleus of the tractus solitarius (NTS) to assess whether acute variations in glucose modulates vagal brain stem neurocircuitry. Increasing D-glucose concentration induced a postsynaptic response in 40% of neurons; neither the response type (inward vs. outward current) nor response magnitude was altered in the presence of tetrodotoxin suggesting direct effects on the NTS neuronal membrane. In contrast, reducing d-glucose concentration induced a postsynaptic response (inward or outward current) in 54% of NTS neurons; tetrodotoxin abolished these responses, suggesting indirect sites of action. The frequency, but not amplitude, of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was correlated with d-glucose concentration in 79% of neurons tested (n = 48). Prior surgical afferent rhizotomy abolished the ability of D-glucose to modulate spontaneous EPSC frequency, suggesting presynaptic actions at vagal afferent nerve terminals to modulate glutamatergic synaptic transmission. In experiments in which EPSCs were evoked via electrical stimulation of the tractus solitarius, EPSC amplitude correlated with D-glucose concentration. These effects were not mimicked by L-glucose, suggesting the involvement of glucose metabolism, not uptake, in the nerve terminal. These data suggest that the synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose-evoked changes in vagovagal reflexes occurs.  相似文献   

20.
Researchers studied the convergence of the vertical posterior semicircular canal (PC), saccular nerves (SAC), utricular nerves (UT), and horizontal semicircular canal nerves (HC) on single vestibular neurons. The vestibular neurons were categorized by their innervating targets. Vestibular neurons were classified as vestibulospinal proper neurons (VS), vestibulo-ocular proper neurons (VO), vestibulo-oculo-spinal neurons sending axon collaterals to the extraocular motoneuron pools and spinal cord (VOS), and vestibular nucleus neurons without axons to the oculomotor nuclei or the spinal cord (V). Results indicate that the percentage of convergence of VS neurons was higher that that of neurons sending axons to the oculomotor nuclei (VO and VOS). They conclude that the convergence of canal and otolith inputs likely contributes mainly to vestibulospinal reflexes by sending inputs to the neck and other muscles during head inclination, which creates the combined stimuli of angular and linear acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号