首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone deacetylases (HDACs) are key targets for chemotherapeutic intervention in malignant diseases. In this paper, a highly sensitive, nonisotopic, homogeneous assay for high-throughput screening of HDAC inhibitors is presented. The assay is based on a new fluorogenic peptidic substrate of HDACs comprising an epsilon-acetylated lysyl moiety and an adjacent 4-methylcoumarin-7-amide moiety at the C terminus of the peptide chain. Upon deacetylation of the acetylated lysyl moiety, molecules are recognized as substrates by trypsin, which releases highly fluorescent 7-amino-4-methylcoumarin molecules in a subsequent step of the assay. The fluorescence increase is directly proportional to the amount of deacetylated substrate molecules, i.e., HDAC activity. Validation of an improved version of the assay revealed (i) a significantly lower enzyme consumption, (ii) an increased screening window coefficient, (iii) a good tolerance toward organic solvents, and (iv) a good suitability for a whole range of different HDAC-like enzymes. The novel assay thus will expedite studies of HDAC-like enzymes and in vitro screening for drug discovery.  相似文献   

2.
3.
Posttranslational modifications such as phosphorylation, acetylation, and methylation play important roles in regulating the structures and functions of histones, which in turn regulate gene expression and DNA repair and replication. Histone-modifying enzymes, such as deacetylases, methyltransferases and demethylases, have been pursued as therapeutic targets for various diseases. However, detection of the activities of these enzymes in high-throughput cell-based formats has remained challenging. The authors have developed high-throughput LanthaScreen cellular assays for Histone H3 site-specific modifications. These assays use cells expressing green fluorescence protein-tagged Histone H3 transiently delivered via BacMam and terbium-labeled anti-Histone H3 modification-specific antibodies. Robust time-resolved F?rster resonance energy transfer signals were detected for H3 lysine-9 acetylation and dimethylation (H3K9me2), serine-10 phosphorylation, K4 di- and trimethylation, and K27 trimethylation. Consistent with previous reports, hypoxic stress increased K4 methylation levels, and methyltransferase G9a inhibitor UNC-0638 decreased K9me2 levels significantly, with little effects on other modifications. To demonstrate the utility of this assay platform in screening, the K9 acetylation assay was used to profile the Enzo Epigenetics Library. Twelve known HDAC inhibitors were identified as hits and followed up in a dose-response format. In conclusion, this assay platform enables high-throughput cell-based analysis of diverse types of posttranslational modifications of Histone H3.  相似文献   

4.
The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.  相似文献   

5.
A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.  相似文献   

6.
The identification of class II HDAC inhibitors has been hampered by lack of efficient enzyme assays, in the preceding paper two assays have been developed to improve the efficiency of these enzymes: mutating an active site histidine to tyrosine, or by the use of a trifluoroacetamide lysine substrate, allowing screening to identify class II HDAC inhibitors. Herein, 2-trifluoroacetylthiophenes have been demonstrated to inhibit class II HDACs, resulting in the development of a series of 5-(trifluoroacetyl)thiophene-2-carboxamides as novel, potent and selective class II HDAC inhibitors. X-ray crystal structures of the HDAC 4 catalytic domain with a bound inhibitor demonstrate these compounds are active site inhibitors and bind in their hydrated form.  相似文献   

7.
HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo   总被引:14,自引:0,他引:14  
Microtubules are cylindrical cytoskeletal structures found in almost all eukaryotic cell types which are involved in a great variety of cellular processes. Reversible acetylation on the epsilon-amino group of alpha-tubulin Lys40 marks stabilized microtubule structures and may contribute to regulating microtubule dynamics. Yet, the enzymes catalysing this acetylation/deacetylation have remained unidentified until recently. Here we report that beta-tubulin interacts with histone deacetylase-6 (HDAC-6) in a yeast two-hybrid assay and in vitro. We find that HDAC-6 is a micro tubule-associated protein capable of deacetylating alpha-tubulin in vivo and in vitro. HDAC-6's microtubule binding and deacetylation functions both depend on the hdac domains. Overexpression of HDAC-6 in mammalian cells leads to tubulin hypoacetylation. In contrast, inhibition of HDAC-6 function by two independent mechanisms--pharmacological (HDAC inhibitors) or genetic (targeted inactivation of HDAC-6 in embryonic stem cells)--leads to hyperacetylation of tubulin and microtubules. Taken together, our data provide evidence that HDAC-6 might act as a dual deacetylase for tubulin and histones, and suggest the possibility that acetylated non-histone proteins might represent novel targets for pharmacological therapy by HDAC inhibitors.  相似文献   

8.
In addition to kinases and G protein-coupled receptors, proteases are one of the main targets in modern drug discovery. Caspases and viral proteases, for instance, are potential targets for new drugs. To satisfy the current need for fast and sensitive high-throughput screening for inhibitors, new homogeneous protease assays are needed. We used a caspase-3 assay as a model to develop a homogeneous time-resolved fluorescence quenching assay technology. The assay utilizes a peptide labeled with both a luminescent europium chelate and a quencher. Cleavage of the peptide by caspase-3 separates the quencher from the chelate and thus recovers europium fluorescence. The sensitivity of the assay was 1 pg/microl for active caspase-3 and 200 pM for the substrate. We evaluated the assay for high-throughput usage by screening 9600 small-molecule compounds. We also evaluated this format for absorption/distribution/metabolism/excretion assays with cell lysates. Additionally, the assay was compared to a commercial fluorescence caspase-3 assay.  相似文献   

9.
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.  相似文献   

10.
Glycosyltransferases catalyze the transfer of a monosaccharide unit from a nucleotide or lipid sugar donor to polysaccharides, lipids, and proteins in a stereospecific manner. Considerable effort has been invested in engineering glycosyltransferases to diversify sugar-containing drugs. An important requirement for glycosyltransferase engineering is the availability of a glycosyltransferase assay system for high-throughput screening of glycosyltransferase mutants. In this study, a general glycosyltransferase assay system was developed based on an ATP sensor. This system showed submicromolar sensitivity and compatibility with both purified enzymes and crude cell extracts. The assay system will be useful for glycosyltransferase engineering based on high-throughput screening, as well as for general glycosyltransferase assays and kinetics.  相似文献   

11.
12.
A strategy is described for the development of high-throughput screening assays against targets of unknown function that involves the use of nuclear magnetic resonance (NMR) spectroscopy. Using this approach, molecules that bind to the protein target are identified from an NMR-based screen of a library of substrates, cofactors, and other compounds that are known to bind to many proteins and enzymes. Once a ligand has been discovered, a fluorescent or radiolabeled analog of the ligand is synthesized that can be used in a high-throughput screen. The approach is illustrated in the development of a high-throughput screening assay against HI-0033, a conserved protein from Haemophilus influenzae whose function is currently unknown. Adenosine was found to bind to HI-0033 by NMR, and fluorescent analogs were rapidly identified that bound to HI-0033 in the submicromolar range. Using these fluorescent compounds, a fluorescence polarization assay was developed that is suitable for high-throughput screening and obtaining detailed structure-activity relationships for lead optimization.  相似文献   

13.
We used two kinases, c-jun N terminal kinase (JNK-1) and protein kinase C (PKC), as model enzymes to evaluate the potential of fluorescence polarization (FP) for high-throughput screening and the susceptibility of these assays to compound interference. For JNK-1 the enzyme kinetics in the FP assay were consistent with those found in a [gamma-33P]ATP filter wash assay. Determined pIC(50)s for nonfluorescent JNK-1 inhibitors were also consistent with those found in the filter wash assay. In contrast, fluorescent compounds were found to interfere with the JNK-1 FP assay, appearing as false positives, defined by their lack of activity in the filter wash assay. We also developed a second assay using a different kinase, protein kinase C, which was used to test a 5000 compound diversity set. As for JNK-1, interference from fluorescent compounds caused a high false positive rate. The Molecular Devices Corporation 'FLARe' instrument is capable of discriminating between fluorophores on the basis of their fluorescence (excited state) lifetime, and may assist in reducing compound interference in fluorescent assays. In both model FP kinase assays described here some, although not complete, reduction in interference from fluorescent compounds was achieved by the use of FLARe.  相似文献   

14.
Histone deacetylases (HDACs) are important epigenetic factors regulating a variety of vital cellular functions such as cell cycle progression, differentiation, cell migration, and apoptosis. Consequently, HDACs have emerged as promising targets for cancer therapy. The drugability of HDACs has been shown by the discovery of several structural classes of inhibitors (HDACis), particularly by the recent approval of two HDACis, vorinostat (ZOLINZA) and romidepsin (Istodax), for the treatment of cutaneous T-cell lymphoma by the US Food and Drug Administration. The outstanding potential of HDACis, with a defined isoform selectivity profile as drugs against a plurality of diseases, vindicates increased effort in developing high-throughput capable assays for screening campaigns. In this study, a dual-competition assay exploiting changes in fluorescence anisotropy and lifetime was used to screen the LOPAC (Sigma-Aldrich, St Louis, MO) library against the bacterial histone deacetylase homologue HDAH from Bordetella, which shares 35% identity with the second deacetylase domain of HDAC6. The binding assay proved to be highly suitable for high-throughput screening campaigns. Several LOPAC compounds have been identified to inhibit HDAH in the lower micromolar range. Most interestingly, some of the hit compounds turned out to be weak but selective inhibitors of human class IIa and IIb HDACs.  相似文献   

15.
16.
The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.  相似文献   

17.
The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2.  相似文献   

18.
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.  相似文献   

19.
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13–Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.  相似文献   

20.
In addition to selecting molecules of pharmacological interest, high-throughput screening campaigns often generate hits of undesirable mechanism, which cannot be exploited for drug discovery as they lead to obvious problems of specificity and developability. Examples of undesirable mechanisms are target alkylation/acylation and compound aggregation. Both types of "promiscuous" mechanisms have been described in the literature, as have methods for their detection. In addition to these mechanisms, compounds can also inhibit by oxidizing susceptible enzyme targets, such as metalloenzymes and cysteine-using enzymes. However, this redox phenomenon has been documented infrequently, and an easy method for detecting this behavior is missing. In this article, the authors describe direct proof of small-molecule oxidation of a cysteine protease by liquid chromatography/tandem mass spectrometry, develop a simple assay to predict this oxidizing behavior by compounds, and show the utility of this assay by demonstrating its ability to distinguish nuisance redox compounds from well-behaved inhibitors in 3 historical GlaxoSmithKline drug discovery efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号