首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in Leydig cell gene expression during development in the mouse   总被引:7,自引:0,他引:7  
Developmental changes in the expression of 18 Leydig cell-specific mRNA species were measured by real-time polymerase chain reaction to partially characterize the developmental phenotype of the cells in the mouse and to identify markers of adult Leydig cell differentiation. Testicular interstitial webs were isolated from mice between birth and adulthood. Five developmental patterns of gene expression were observed. Group 1 contained mRNA species encoding P450 side chain cleavage (P450(scc)), P450(c17), relaxin-like factor (RLF), glutathione S-transferase 5-5 (GST5-5), StAR protein, LH receptor, and epoxide hydrolase (EH); group 2 contained 3beta-hydroxysteroid dehydrogenase (3beta-HSD) VI, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) III, vascular cell adhesion molecule 1, estrogen sulfotransferase, and prostaglandin D (PGD)-synthetase; group 3 contained patched and thrombospondin 2 (TSP2); group 4 contained 5alpha-reductase 1 and 3alpha-hydroxysteroid dehydrogenase; group 5 contained sulfonylurea receptor 2 and 3beta-HSD I. Group 1 contained genes that were expressed in fetal and adult Leydig cells and which increased in expression around puberty toward a maximum in the adult. Group 2 contained genes expressed only in the adult Leydig cell population. Group 3 contained genes with predominant fetal/neonatal expression in the interstitial tissue. Group 4 contained genes with a peak of expression around puberty, whereas genes in group 5 show little developmental change in expression. Highest mRNA levels in descending order were RLF, P450(c17), EH, 17beta-HSD III, PGD-synthetase, GST5-5, and P450(scc). Results identify five genes expressed in the mouse adult Leydig cell population, but not in the fetal population, and one gene (TSP2) that may be expressed only in the fetal Leydig cell population. The developmental pattern of gene expression suggests that three distinct phases of adult Leydig cell differentiation occur.  相似文献   

2.
3.
Differentiation of the adult Leydig cell population in the postnatal testis   总被引:8,自引:0,他引:8  
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.  相似文献   

4.
5.
6.
7.
The number of Leydig cells was determined by stereologic procedures in adult Syrian hamsters housed in long days (14L:10D) to maintain testicular activity (active), in short days (5L:19D) for 12-13 wk to induce testicular regression (photoperiod-induced regressed), or in short days for a period of 21 wk or more to allow spontaneous gonadal recrudescence (spontaneously recrudesced). Testes were removed, sliced, fixed, embedded in Epon 812, and observed by bright-field microscopy. Testicular and seminal vesicle weights, plasma testosterone concentration, total Leydig cell volume per testis, and volume of single Leydig cell were greater (p less than 0.01) in active and recrudesced animals than in regressed animals. The density of Leydig cells was greater in the regressed testes, but the total number per testis was not influenced by photoperiod. In Experiment 2, the rate of recruitment of Leydig cells was determined in 5 adult hamsters exposed to long days (active) or 5 hamsters whose testes were regressed by exposure of animals to short days for 13 wk followed by long-day exposure to initiate testicular growth (photoperiod-induced recrudescing). Hamsters were injected for 3 days/wk for 3 wk with tritiated thymidine, 0.5 or 1 microCi/g body weight. Testes were fixed and tissues prepared, as above, and processed for autoradiography. Again, the photoperiod did not influence the number of Leydig cells per testis. Labeling of Leydig cell nuclei revealed that recruitment of new Leydig cells occurred at approximately 1.3% per day in recrudescing testes but also occurred at approximately 0.6% per day in active testes. Without change in the total number of Leydig cells, new Leydig cells were added continually to the existing population in adult hamsters with either recrudescing or active testes.  相似文献   

8.
Presenilin-1, mutations of which cause the early-onset of Alzheimer's disease, was shown to be abundantly expressed in the testis as well as the brain. In spite of the high expression level of this protein in the testis, no further analysis has been undertaken. We aimed to study the distribution and developmental changes in presenilin-1 protein, and to provide clues so as to elucidate the role of this protein in the rat testis. To evaluate the specificity of the anti presenilin-1 antibody, rat presenilin-1 protein was expressed in COS-7 cells and the recombinant protein was used for western blot analysis. A positive band of approximately 20 kDa corresponding to the C-terminal fragment of proteolyzed presenilin-1 protein was observed. Using testis and brain tissue samples, a 20 kDa band was detected in both tissues suggesting a similar proteolytic process, but the expression level in the testis was higher than that in the brain. The expression level increased significantly during postnatal testis development. By an immunohistochemical analysis of the rat testis, a strong signal was observed in interstitial cells and further study with cultured TM3 murine Leydig cells revealed an abundant expression of presenilin-1 in Leydig cells. Our study suggests that presenilin-1 expression in Leydig cells may play an important role in Leydig cell function and testis development.  相似文献   

9.
10.
Undifferentiated teratocarcinoma stem cells do not express heat shock genes. Solid teratocarcinomas grown in vivo which contain clusters of teratocarcinoma-derived differentiated tissue do respond to heat shock. During mouse embryonic development the expression of heat shock genes is first observed with morula/blastocyst stages of mouse primplantation embryos.  相似文献   

11.
The aim of this study was to investigate stem cell factor and c-kit gene expression and protein localization in the mesonephros and ovary of sheep fetuses at different days of gestation, using RNA in situ hybridization and immunohistochemical procedures. At days 24 and 26 of gestation, stem cell factor mRNA and protein were present in cells throughout the developing gonad and mesonephros. From day 28 to day 40 of gestation, stem cell factor mRNA and protein became increasingly localized to the cortical region of the ovary, where most germ cells were present as actively proliferating oogonia. From day 40 to day 90 of gestation, stem cell factor mRNA and protein localization were confined mainly to the ovarian cortex. Moreover, within the cortical region, stem cell factor mRNA was low or absent where follicles were first forming and highest in the outer ovarian cortex, where germ cells were undergoing mitosis or the early stages of meiosis. In contrast, stem cell factor protein was present in newly forming follicles, as well as in mitotic and meiotic germ cells, which is consistent with the presence of both membrane-bound and soluble forms of this ligand. However, by day 90 of gestation, both stem cell factor mRNA and protein were observed in the granulosa cells of most (> 90%) primordial follicles. C-kit mRNA and protein were observed from day 24 of gestation in both germ cells and somatic cells but, with increasing gestational age, preferentially in germ cells (for example, pre-meiotic germ cells and both isolated oocytes and follicle-enclosed oocytes). C-kit protein, but not mRNA, was also observed in germ cells that were undergoing meiosis. The results indicate that the cells containing stem cell factor mRNA within the ovary up to day 90 of gestation originated from the gonadal blastema and from cells that migrated from the mesonephros before day 28 of gestation. Since stem cell factor mRNA was absent in both mesonephric cells migrating after day 28 of gestation and in regions where follicles were first forming, it is suggested that these later migrating mesonephric cells are the progenitors of the granulosa cells in the first forming follicles. In conclusion, during follicle formation, c-kit mRNA is localized to germ cells whereas c-kit, together with stem cell factor protein, is localized to both germ cells and somatic cells, consistent with the hypothesis that the presence of this receptor-ligand pair is essential to prevent apoptosis.  相似文献   

12.
13.
Summary Ethane dimethanesulphonate (EDS) was used as a specific cytotoxin to eliminate the Leydig cell population of the adult rat testis. Ultrastructural, morphometric and serum gonadotrophin and testosterone analysis was used to study the response of the intertubular tissue of the testis from 1 day to 10 weeks after EDS treatment. In control animals, the testis contained approximately 28 million Leydig cells and 8 million macrophages. Three to seven days after EDS treatment, Leydig cells were absent and serum testosterone was undetectable. Macrophage numbers increased three-fold by 3 days and returned to pretreatment values thereafter. At 2 and 3 weeks post-EDS, foetal-type Leydig cells (1–2 million per testis) appeared in proximity to perivascular and peritubular tissues, a feature also observed at 4 weeks when numerous such cells (15 million per testis) formed prominent clusters in perivascular and peritubular locations. Between 6 and 10 weeks after EDS treatment, the foetal-type Leydig cells were transformed morphologically into adult-type Leydig cells, they occupied central intertubular positions and their numbers were restored to pretreatment values. Regeneration of Leydig cells was reflected by elevated serum testosterone levels which returned towards the normal range. The results demonstrate the regenerative capacity of the testicular intertubular tissue and indicate a dual site of origin of Leydig cells which initially resemble foetal-type Leydig cells prior to establishing the adult-type Leydig cell population. The morphological pattern of Leydig cell regeneration suggests that in addition to gonadotrophic stimulation, local testicular factors from the seminiferous tubules may stimulate Leydig cell growth.  相似文献   

14.
Embryonal carcinoma (EC) cells obtained either from teratocarcinomas or directly from in vitro cultures of mouse embryos (EK) can be used as models for the early stages of normal mammalian development. A few known examples of experimental designs with such cells are reviewed: aggregates with normal embryos, promotion of parthenogenetic development by injection of EK cells into blastocysts, EK cells homozygous for a lethal gene, timing of expression in differentiating EC cells of a tissue-specific gene product, and X chromosome inactivation.  相似文献   

15.
Endocannabinoids are lipidic modulators able to bind cannabinoid receptors (CNRs). Two types of CNRs have been cloned, CNR1 (central) and CNR2 (peripheral). The objectives of the present study were to investigate the expression pattern of CNR1 in the rat testis during prepubertal development and to define the CNR1 spatiotemporal pattern. From 31 to 60 days of age, CNR1 was immunolocalized in round elongating spermatids and spermatozoa, suggesting an important role for this receptor in spermatogenesis. From 14 to 60 days of age, adult Leydig cells (ALCs) at different developmental stages were positive for CNR1. In particular, CNR1 expression in differentiating ALCs was negatively correlated to cell division. Bromodeoxyuridine uptake experiments on serial sections showed that immature Leydig cells in mitosis were negative for CNR1; in contrast, immature nonmitotic Leydig cells were positive for CNR1. A further observation of few ALCs in CNR1KO mice validates the role of CNR1 during proliferative activity involved in ALC differentiation. In addition, starting from 41 days of age, a faint CNR1 signal was also observed in Sertoli cells. Taken together, these results demonstrate the first clear evidence (to our knowledge) of CNR1 in mammalian germinal epithelium, ALCs, and Sertoli cells and indicate that differentiation of ALCs may depend on the endocannabinoid system.  相似文献   

16.
MAPK kinase (MEK)1 and MEK2 were deleted from Leydig cells by crossing Mek1(f/f);Mek2(-/-) and Cyp17iCre mice. Primary cultures of Leydig cell from mice of the appropriate genotype (Mek1(f/f);Mek2(-/-);iCre(+)) show decreased, but still detectable, MEK1 expression and decreased or absent ERK1/2 phosphorylation when stimulated with epidermal growth factor, Kit ligand, cAMP, or human choriogonadotropin (hCG). The body or testicular weights of Mek1(f/f);Mek2(-/-);iCre(+) mice are not significantly affected, but the testis have fewer Leydig cells. The Leydig cell hypoplasia is paralleled by decreased testicular expression of several Leydig cell markers, such as the lutropin receptor, steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, 17α-hydroxylase, and estrogen sulfotransferase. The expression of Sertoli or germ cell markers, as well as the shape, size, and cellular composition of the seminiferous tubules, are not affected. cAMP accumulation in response to hCG stimulation in primary cultures of Leydig cells from Mek1(f/f);Mek2(-/-);iCre(+) mice is normal, but basal testosterone and testosterone syntheses provoked by addition of hCG or a cAMP analog, or by addition of substrates such as 22-hydroxycholesterol or pregnenolone, are barely detectable. The Mek1(f/f);Mek2(-/-);iCre(+) males show decreased intratesticular testosterone and display several signs of hypoandrogenemia, such as elevated serum LH, decreased expression of two renal androgen-responsive genes, and decreased seminal vesicle weight. Also, in spite of normal sperm number and motility, the Mek1(f/f);Mek2(-/-);iCre(+) mice show reduced fertility. These studies show that deletion of MEK1/2 in Leydig cells results in Leydig cell hypoplasia, hypoandrogenemia, and reduced fertility.  相似文献   

17.
18.
The ultrastructure and developmental fate of the fetal generation of Leydig cells of the rat testis was studied from the 17th day of fetal life up to 100 days after birth. The number of fetal Leydig cells per testis was determined by light microscopic morphometric analysis of semithin plastic sections. In fetal testes (days 17-22 postconception), Leydig cells exhibited a characteristic ultrastructure, containing smooth endoplasmic reticulum, many lipid inclusions and glycogen. Testes of 17-day-old fetuses contained about 25 x 10(3) fetal Leydig cells, rapidly increasing to 90 x 10(3) per testis in 21-day-old fetuses. After birth, fetal Leydig cells per testis remained relatively constant up to 2 weeks (80-90 x 10(3) per testis) and were identified by light and electron microscopy which showed their numerous lipid inclusions, their tendency for clustering and their association with interstitial tissue fibroblasts which partly encapsulated the fetal Leydig cells. From 21-100 days after birth, fetal Leydig cell numbers were quite variable with a mean of 45-60 x 10(3) per testis. These results are the first to show that the fetal generation of Leydig cells persist in the adult testis and do not undergo early postnatal degeneration or dedifferentiation into other interstitial cells. The simultaneous occurrence of the fetal Leydig cells and the adult population of Leydig cells indicates that these cells are distinct cell generations which are developmentally unrelated.  相似文献   

19.
Adult Leydig cells originate within the testis postnatally. Their formation is a continuous process involving gradual transformation of progenitors into the mature cell type. Despite the gradual nature of these changes, studies of proliferation, differentiation and steroidogenic function in the rat Leydig cell led to the recognition of three distinct developmental stages in the adult Leydig cell lineage: Leydig cell progenitors, immature Leydig cells and adult Leydig cells. In the first stage, Leydig cell progenitors arise from active proliferation of mesenchymal-like stem cells in the testicular interstitium during the third week of postnatal life and are recognizable by the presence of Leydig cell markers such as histochemical staining for 3β-hydroxysteroid dehydrogenase (3β-HSD) and the present of luteinizing hormone (LH) receptors. They proliferate actively and by day 28 postpartum differentiate into immature Leydig cells. In the second stage, immature Leydig cells are morphologically recognizable as Leydig cells. They have an abundant smooth endoplasmic reticulum and are steroidogenically active, but primarily produce 5-reduced androgens rather than testosterone. Immature Leydig cells divide only once, giving rise to the total adult Leydig cell population. In the third and final stage, adult Leydig cells are fully differentiated, primarily produce testosterone and rarely divide. LH and androgen act together to stimulate differentiation of Leydig cell progenitors into immature Leydig cells. Preliminary data indicate that insulin like growth factor-1 (IGF-1) acts subsequently in the transformation of immature Leydig cells into adult Leydig cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号