首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement.  相似文献   

2.
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.  相似文献   

3.
Complex neural circuits in the mammalian brain develop through a combination of genetic instruction and activity-dependent refinement. The relative role of these factors and the form of neuronal activity responsible for circuit development is a matter of significant debate. In the mammalian visual system, retinal ganglion cell projections to the brain are mapped with respect to retinotopic location and eye of origin. We manipulated the pattern of spontaneous retinal waves present during development without changing overall activity levels through the transgenic expression of β2-nicotinic acetylcholine receptors in retinal ganglion cells of mice. We used this manipulation to demonstrate that spontaneous retinal activity is not just permissive, but instructive in the emergence of eye-specific segregation and retinotopic refinement in the mouse visual system. This suggests that specific patterns of spontaneous activity throughout the developing brain are essential in the emergence of specific and distinct patterns of neuronal connectivity.  相似文献   

4.
HP Wei  YY Yao  RW Zhang  XF Zhao  JL Du 《Neuron》2012,75(3):479-489
Neural activity-induced long-term potentiation (LTP) of synaptic transmission is believed to be one of the cellular mechanisms underlying experience-dependent developmental refinement of neural circuits. Although it is well established that visual experience and neural activity are critical for the refinement of retinal circuits, whether and how LTP occurs in the retina remain unknown. Using in?vivo perforated whole-cell recording and two-photon calcium imaging, we find that both repeated electrical and visual stimulations can induce LTP at excitatory synapses formed by bipolar cells on retinal ganglion cells in larval but not juvenile zebrafish. LTP induction requires the activation of postsynaptic N-methyl-D-aspartate receptors, and its expression involves arachidonic acid-dependent presynaptic changes in calcium dynamics and neurotransmitter release. Physiologically, both electrical and visual stimulation-induced LTP can enhance visual responses of retinal ganglion cells. Thus, LTP exists in developing retinae with a presynaptic locus and may serve for visual experience-dependent refinement of retinal circuits.  相似文献   

5.
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity.  相似文献   

6.
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity.  相似文献   

7.
Patterns of spontaneous activity in the developing retina, LGN, and cortex are necessary for the proper development of visual cortex. With these patterns intact, the primary visual cortices of many newborn animals develop properties similar to those of the adult cortex but without the training benefit of visual experience. Previous models have demonstrated how V1 responses can be initialized through mechanisms specific to development and prior to visual experience, such as using axonal guidance cues or relying on simple, pairwise correlations on spontaneous activity with additional developmental constraints. We argue that these spontaneous patterns may be better understood as part of an "innate learning" strategy, which learns similarly on activity both before and during visual experience. With an abstraction of spontaneous activity models, we show how the visual system may be able to bootstrap an efficient code for its natural environment prior to external visual experience, and we continue the same refinement strategy upon natural experience. The patterns are generated through simple, local interactions and contain the same relevant statistical properties of retinal waves and hypothesized waves in the LGN and V1. An efficient encoding of these patterns resembles a sparse coding of natural images by producing neurons with localized, oriented, bandpass structure-the same code found in early visual cortical cells. We address the relevance of higher-order statistical properties of spontaneous activity, how this relates to a system that may adapt similarly on activity prior to and during natural experience, and how these concepts ultimately relate to an efficient coding of our natural world.  相似文献   

8.
Firth SI  Wang CT  Feller MB 《Cell calcium》2005,37(5):425-432
A characteristic feature of developing neural networks is spontaneous periodic activity. In the developing retina, retinal ganglion cells fire bursts of action potentials that drive large increases in intracellular calcium concentration with a periodicity of minutes. These periodic bursts of action potentials propagate across the developing inner retina as waves, driving neighboring retinal ganglion cells to fire in a correlated fashion. Here we will review recent progress in elucidating the mechanisms in mammals underlying retinal wave propagation and those regulating the periodicity with which these retinal waves occur. In addition, we will review recent experiments indicating that retinal waves are critical for refining retinal projections to their primary targets in the central visual system and may be involved in driving developmental processes within the retina itself.  相似文献   

9.
In the developing vertebrate retina, nAChR synapses are among the first to appear. This early cholinergic circuitry plays a key role in generating "retinal waves," spontaneously generated waves of action potentials that sweep across the ganglion cell layer. These retinal waves exist for a short period of time during development when several circuits within the visual system are being established. Here I review the cholinergic circuitry of the developing retina and the role these early circuits play in the development of the retina itself and of retinal projections to the lateral geniculate nucleus of the thalamus.  相似文献   

10.
Stellwagen D  Shatz CJ 《Neuron》2002,33(3):357-367
A central hypothesis of neural development is that patterned activity drives the refinement of initially imprecise connections. We have examined this hypothesis directly by altering the frequency of spontaneous waves of activity that sweep across the mammalian retina prior to vision. Activity levels were increased in vivo using agents that elevate cAMP. When one eye is made more active, its layer within the LGN is larger despite the other eye having normal levels of activity. Remarkably, when the frequency of retinal waves is increased in both eyes, normally sized layers form. Because relative, rather than absolute, levels of activity between the eyes regulate the amount of LGN territory devoted to each eye, we conclude that activity acts instructively to guide binocular segregation during development.  相似文献   

11.
12.
The refinement of the topographic map of visual space within the optic tectum of the frog is activity-dependent. The use of the three-eyed frog preparation to assay the operation of this fine-tuning mechanism indicates that this process is mediated by the NMDA receptor: Chronic in vivo treatment with APV, an NMDA antagonist, disrupts the segregation of retinal afferents into eye-specific zones while NMDA treatment sharpens this pattern. This latter effect is accompanied by a decreased sensitivity of the system to applied NMDA. Activation of the NMDA receptor may mediate the fine-tuning mechanism by initiating the stabilization of appropriate synapses. The requirements for NMDA receptor activation necessitate the convergence of terminals carrying correlated activity patterns. Such patterns of activity are provided by ganglion cells whose cell bodies lie near one another in the retina, and who should therefore, in an accurate visual map, terminate near one another in the tectum. Synapses from ganglion cells who do not neighbor one another in the retina have uncorrelated firing patterns and therefore do not activate the NMDA receptor. These synapses then would not be stabilized relative to one another. In addition to organizing the retinal projection, NMDA receptor activation may also modulate retinal ganglion cell arbor morphology, since chronic in vivo APV or NMDA treatments decrease arbor density. These results are discussed in terms of the effect of NMDA receptor activation on branch initiation and the rate of branch retraction.  相似文献   

13.
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world.  相似文献   

14.
The visual cortex is organized into retinotopic maps that preserve an orderly representation of the visual world, achieved by topographically precise inputs from the lateral geniculate nucleus. We show here that geniculocortical mapping is imprecise when the waves of spontaneous activity in the retina during the first postnatal week are disrupted genetically. This anatomical mapping defect is present by postnatal day 8 and has functional consequences, as revealed by optical imaging and microelectrode recording in adults. Pharmacological disruption of these retinal waves during the first week phenocopies the mapping defect, confirming both the site and the timing of the disruption in neural activity responsible for the defect. Analysis shows that the geniculocortical miswiring is not a trivial or necessary consequence of the retinogeniculate defect. Our findings demonstrate that disrupting early spontaneous activity in the eye alters thalamic connections to the cortex.  相似文献   

15.
Positional identity in the visual system affects the topographic projection of the retina onto its central targets. In this review we discuss gradients and positional information in the retina, when and how they arise, and their functional significance in development. When the axons of retinal ganglion cells leave the eye, they navigate through territory in the central nervous system that is rich in positional information. We review studies that explore the navigational cues that the growth cones of retinal axons use to orient towards their target and organize themselves as they make this journey. Finally, these axons arrive at their central targets and make a precise topographic map of visual space that is crucial for adaptive visual behavior. In the last section of this review, we examine the topographic cues in the tectum, what they are, when, and how they arise, and how retinal axons respond to them. We also touch on the role of neural activity in the refinement of this topography. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Dynamics of retinal waves are controlled by cyclic AMP   总被引:7,自引:0,他引:7  
Stellwagen D  Shatz CJ  Feller MB 《Neuron》1999,24(3):673-685
Waves of spontaneous activity sweep across the developing mammalian retina and influence the pattern of central connections made by ganglion cell axons. These waves are driven by synaptic input from amacrine cells. We show that cholinergic synaptic transmission during waves is not blocked by TTX, indicating that release from starburst amacrine cells is independent of sodium action potentials. The spatiotemporal properties of the waves are regulated by endogenous release of adenosine, which sets intracellular cAMP levels through activation of A2 receptors present on developing amacrine and ganglion cells. Increasing cAMP levels increase the size, speed, and frequency of the waves. Conversely, inhibiting adenylate cyclase or PKA prevents wave activity. Together, these results imply a novel mechanism in which levels of cAMP within an immature retinal circuit regulate the precise spatial and temporal patterns of spontaneous neural activity.  相似文献   

17.
Spontaneous rhythmic activity is a hallmark feature of the developing retina, where propagating retinal waves instruct axonal targeting and synapse formation. Retinal waves cease around the time of eye-opening; however, the fate of the underlying synaptic circuitry is unknown. Whether retinal waves are unique to the developing retina or if they can be induced in adulthood is not known. Combining patch-clamp techniques with calcium imaging, we demonstrate that propagative events persist in adult mouse retina when it is deprived of inhibitory input. This activity originates in bipolar cells, resembling glutamatergic stage III retinal waves. We find that, as it develops, the network interactions progressively curtail this activity. Together, this provides evidence that the correlated propagative neuronal activity can be induced in adult retina following the blockade of inhibitory interactions.  相似文献   

18.
Spontaneous activity is found in many regions of the developing nervous system; such activity is thought to be instructive for guiding developmental processes. In particular, the developing retina generates correlated patterns of activity known as retinal waves. We review the main theoretical models that have been developed to study the mechanisms for generation and propagation of retinal waves. Much of the progress in this field has been due to the close interaction between experimentalists and theorists in analyzing and modeling spontaneous activity. We conclude by describing spontaneous activity models in other systems and suggestions for future modeling work.  相似文献   

19.
Han F  Caporale N  Dan Y 《Neuron》2008,60(2):321-327
Spontaneous waves of activity propagating across large cortical areas may play important roles in sensory processing and circuit refinement. However, whether these waves are in turn shaped by sensory experience remains unclear. Here we report that visually evoked cortical activity reverberates in subsequent spontaneous waves. Voltage-sensitive dye imaging in rat visual cortex shows that following repetitive presentation of a given visual stimulus, spatiotemporal activity patterns resembling the evoked response appear more frequently in the spontaneous waves. This effect is specific to the response pattern evoked by the repeated stimulus, and it persists for several minutes without further visual stimulation. Such wave-mediated reverberation could contribute to short-term memory and help to consolidate the transient effects of recent sensory experience into long-lasting cortical modifications.  相似文献   

20.
Receptor protein tyrosine phosphatases (RPTPs), are involved in axon outgrowth and guidance not only in the Drosophila visual system (Garrity et al., 1999. Neuron 22, 707-717) but also in the developing vertebrate retina (Ledig et al., 1999a. J. Cell Biol. 147, 375-388). We have cloned a variety of Xenopus RPTPs, including four RPTPs expressed in the developing visual system (LAR, PTP-delta, CRYP-alpha and PTP-rho). These four RPTPs are transcribed in the developing optic vesicle during differentiation and in overlapping but distinct patterns in the developing retina during retinal layer formation. LAR, PTP-delta, and CRYP-alpha are also expressed in retinal ganglion cells during axonogenesis and during axon guidance from the retina to the optic tectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号